4,917 research outputs found
Molecular scale contact line hydrodynamics of immiscible flows
From extensive molecular dynamics simulations on immiscible two-phase flows,
we find the relative slipping between the fluids and the solid wall everywhere
to follow the generalized Navier boundary condition, in which the amount of
slipping is proportional to the sum of tangential viscous stress and the
uncompensated Young stress. The latter arises from the deviation of the
fluid-fluid interface from its static configuration. We give a continuum
formulation of the immiscible flow hydrodynamics, comprising the generalized
Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard
interfacial free energy. Our hydrodynamic model yields interfacial and velocity
profiles matching those from the molecular dynamics simulations at the
molecular-scale vicinity of the contact line. In particular, the behavior at
high capillary numbers, leading to the breakup of the fluid-fluid interface, is
accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with
captions, content changed in this resubmissio
Environmental Effect on the Associations of Background Quasars with Foreground Objects: II. Numerical Simulations
Using numerical simulations of cluster formation in the standard CDM model
(SCDM) and in a low-density, flat CDM model with a cosmological constant
(LCDM), we investigate the gravitational lensing explanation for the reported
associations between background quasars and foreground clusters. Under the
thin-lens approximation and the unaffected background hypothesis , we show that
the recently detected quasar overdensity around clusters of galaxies on scales
of arcminutes cannot be interpreted as a result of the gravitational
lensing by cluster matter and/or by their environmental and projected matter
along the line of sight, which is consistent with the analytical result based
on the observed cluster and galaxy correlations (Wu, et al. 1996). It appears
very unlikely that uncertainties in the modeling of the gravitational lensing
can account for the disagreement between the theoretical predictions and the
observations. We conclude that either the detected signal of the quasar-cluster
associations is a statistical fluke or the associations are are generated by
mechanisms other than the magnification bias.Comment: 15 pages, 5 figures, accepted for publication in Ap
Recommended from our members
Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities.
While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 μg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions.IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities
Derivation of the Effective Chiral Lagrangian for Pseudoscalar Mesons from QCD
We formally derive the chiral Lagrangian for low lying pseudoscalar mesons
from the first principles of QCD considering the contributions from the normal
part of the theory without taking approximations. The derivation is based on
the standard generating functional of QCD in the path integral formalism. The
gluon-field integration is formally carried out by expressing the result in
terms of physical Green's functions of the gluon. To integrate over the
quark-field, we introduce a bilocal auxiliary field Phi(x,y) representing the
mesons. We then develop a consistent way of extracting the local pseudoscalar
degree of freedom U(x) in Phi(x,y) and integrating out the rest degrees of
freedom such that the complete pseudoscalar degree of freedom resides in U(x).
With certain techniques, we work out the explicit U(x)-dependence of the
effective action up to the p^4-terms in the momentum expansion, which leads to
the desired chiral Lagrangian in which all the coefficients contributed from
the normal part of the theory are expressed in terms of certain Green's
functions in QCD. Together with the existing QCD formulae for the anomaly
contributions, the present results leads to the complete QCD definition of the
coefficients in the chiral Lagrangian. The relation between the present QCD
definition of the p^2-order coefficient F_0^2 and the well-known approximate
result given by Pagels and Stokar is discussed.Comment: 16 pages in RevTex, some typos are corrected, version for publication
in Phys. Rev.
Experimental demonstration of a squeezing enhanced power recycled Michelson interferometer for gravitational wave detection
Interferometric gravitational wave detectors are expected to be limited by
shot noise at some frequencies. We experimentally demonstrate that a power
recycled Michelson with squeezed light injected into the dark port can overcome
this limit. An improvement in the signal-to-noise ratio of 2.3dB is measured
and locked stably for long periods of time. The configuration, control and
signal readout of our experiment are compatible with current gravitational wave
detector designs. We consider the application of our system to long baseline
interferometer designs such as LIGO.Comment: 4 pages 4 figure
Recommended from our members
On theory, technique and text: guidelines and suggestions on publishing international human resource management research
Publishing international human resource management (IHRM) research continues to be a challenge for seasoned as much as junior faculty. Quantitative and qualitative studies exploring HRM-related topics involving multiple countries or complex contextual factors raise issues of developing an appropriate research question, presenting multilevel methodologies, and making a contribution in which context stands central. In this Editorial, we reflect on such issues as discussed at the 2nd Global Conference on International Human Resource Management held at the Pennsylvania State University (USA) in 2015. Journal editors, reviewers and authors contribute to provide practical suggestions on the craft of getting published, including design of a study, developing a writing style, and dealing with journal feedback. Finally, we explore some myths and misperceptions around publishing IHRM research in high-ranking journals
Src Inhibition Blocks c-Myc Translation and Glucose Metabolism to Prevent the Development of Breast Cancer
Preventing breast cancer will require the development of targeted strategies that can effectively block disease progression. Tamoxifen and aromatase inhibitors are effective in addressing estrogen receptor–positive (ER+) breast cancer development, but estrogen receptor–negative (ER−) breast cancer remains an unmet challenge due to gaps in pathobiologic understanding. In this study, we used reverse-phase protein array to identify activation of Src kinase as an early signaling alteration in premalignant breast lesions of women who did not respond to tamoxifen, a widely used ER antagonist for hormonal therapy of breast cancer. Src kinase blockade with the small-molecule inhibitor saracatinib prevented the disorganized three-dimensional growth of ER− mammary epithelial cells in vitro and delayed the development of premalignant lesions and tumors in vivo in mouse models developing HER2+ and ER− mammary tumors, extending tumor-free and overall survival. Mechanistic investigations revealed that Src blockade reduced glucose metabolism as a result of an inhibition in ERK1/2–MNK1–eIF4E–mediated cap-dependent translation of c-Myc and transcription of the glucose transporter GLUT1, thereby limiting energy available for cell growth. Taken together, our results provide a sound rationale to target Src pathways in premalignant breast lesions to limit the development of breast cancers
- …
