4,917 research outputs found

    Molecular scale contact line hydrodynamics of immiscible flows

    Full text link
    From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with captions, content changed in this resubmissio

    Environmental Effect on the Associations of Background Quasars with Foreground Objects: II. Numerical Simulations

    Full text link
    Using numerical simulations of cluster formation in the standard CDM model (SCDM) and in a low-density, flat CDM model with a cosmological constant (LCDM), we investigate the gravitational lensing explanation for the reported associations between background quasars and foreground clusters. Under the thin-lens approximation and the unaffected background hypothesis , we show that the recently detected quasar overdensity around clusters of galaxies on scales of 10\sim10 arcminutes cannot be interpreted as a result of the gravitational lensing by cluster matter and/or by their environmental and projected matter along the line of sight, which is consistent with the analytical result based on the observed cluster and galaxy correlations (Wu, et al. 1996). It appears very unlikely that uncertainties in the modeling of the gravitational lensing can account for the disagreement between the theoretical predictions and the observations. We conclude that either the detected signal of the quasar-cluster associations is a statistical fluke or the associations are are generated by mechanisms other than the magnification bias.Comment: 15 pages, 5 figures, accepted for publication in Ap

    Derivation of the Effective Chiral Lagrangian for Pseudoscalar Mesons from QCD

    Full text link
    We formally derive the chiral Lagrangian for low lying pseudoscalar mesons from the first principles of QCD considering the contributions from the normal part of the theory without taking approximations. The derivation is based on the standard generating functional of QCD in the path integral formalism. The gluon-field integration is formally carried out by expressing the result in terms of physical Green's functions of the gluon. To integrate over the quark-field, we introduce a bilocal auxiliary field Phi(x,y) representing the mesons. We then develop a consistent way of extracting the local pseudoscalar degree of freedom U(x) in Phi(x,y) and integrating out the rest degrees of freedom such that the complete pseudoscalar degree of freedom resides in U(x). With certain techniques, we work out the explicit U(x)-dependence of the effective action up to the p^4-terms in the momentum expansion, which leads to the desired chiral Lagrangian in which all the coefficients contributed from the normal part of the theory are expressed in terms of certain Green's functions in QCD. Together with the existing QCD formulae for the anomaly contributions, the present results leads to the complete QCD definition of the coefficients in the chiral Lagrangian. The relation between the present QCD definition of the p^2-order coefficient F_0^2 and the well-known approximate result given by Pagels and Stokar is discussed.Comment: 16 pages in RevTex, some typos are corrected, version for publication in Phys. Rev.

    Experimental demonstration of a squeezing enhanced power recycled Michelson interferometer for gravitational wave detection

    Get PDF
    Interferometric gravitational wave detectors are expected to be limited by shot noise at some frequencies. We experimentally demonstrate that a power recycled Michelson with squeezed light injected into the dark port can overcome this limit. An improvement in the signal-to-noise ratio of 2.3dB is measured and locked stably for long periods of time. The configuration, control and signal readout of our experiment are compatible with current gravitational wave detector designs. We consider the application of our system to long baseline interferometer designs such as LIGO.Comment: 4 pages 4 figure

    Src Inhibition Blocks c-Myc Translation and Glucose Metabolism to Prevent the Development of Breast Cancer

    Get PDF
    Preventing breast cancer will require the development of targeted strategies that can effectively block disease progression. Tamoxifen and aromatase inhibitors are effective in addressing estrogen receptor–positive (ER+) breast cancer development, but estrogen receptor–negative (ER−) breast cancer remains an unmet challenge due to gaps in pathobiologic understanding. In this study, we used reverse-phase protein array to identify activation of Src kinase as an early signaling alteration in premalignant breast lesions of women who did not respond to tamoxifen, a widely used ER antagonist for hormonal therapy of breast cancer. Src kinase blockade with the small-molecule inhibitor saracatinib prevented the disorganized three-dimensional growth of ER− mammary epithelial cells in vitro and delayed the development of premalignant lesions and tumors in vivo in mouse models developing HER2+ and ER− mammary tumors, extending tumor-free and overall survival. Mechanistic investigations revealed that Src blockade reduced glucose metabolism as a result of an inhibition in ERK1/2–MNK1–eIF4E–mediated cap-dependent translation of c-Myc and transcription of the glucose transporter GLUT1, thereby limiting energy available for cell growth. Taken together, our results provide a sound rationale to target Src pathways in premalignant breast lesions to limit the development of breast cancers
    corecore