271 research outputs found

    Model-Based Decision Support for Industry-Environment Interactions

    Get PDF
    Applied systems analysis is -- or should be -- a tool in the hands of planners and decision makers who have to deal with the complex and growing problems of modern society. There is, however, an obvious gap between the ever-increasing complexity and volume of scientific and technological information and tools of analysis relevant to large socio-technical and environmental systems, and the information requirements at a strategic planning and policy level. The Advanced Computer Applications (ACA) project builds on IIASA's traditional strength in the methodological foundations of operations research and applied systems analysis, and its rich experience in numerous application areas including the environment, technology, and risk. The ACA group draws on this infrastructure and combines it with elements of AI and advanced information and computer technology. Several completely externally-funded research and development projects in the field of model-based decision support and applied Artificial Intelligence (AI) are currently under way. As an example of this approach to information and decision support systems, one of the components of an R&D project sponsored by the CEC's EURATOM Joint Research Centre (JRC) at Ispra, Italy, in the area of hazardous substances and industrial risk management, is described in this paper. The PDA (Production Distribution Area) is an interactive optimization code (based on DIDASS, one of a family of multicriteria decision support tools developed at IIASA) and a linear problem solver, for chemical industry structures, configured for the pesticide industry of a hypothetical region. The user can select optimization criteria, define allowable ranges or constraints on these criteria, define reference points for the multi-criteria trade-off, and display various levels of model output, including the waste streams generated by the different industrial structure alternatives. These waste streams can then be used to provide input conditions for the environmental impact models. With the emphasis on a directly understandable problem representation and dynamic color graphics, and the user interface as a key element of interactive decision support systems, this is a step toward increased direct practical usability of IIASA's research results

    Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    Full text link
    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmonic motion as studied in kinematics. This exercise can help develop an appreciation of abstract thinking in physics.Comment: 6 pages including 1 figur

    Resilience beyond neoliberalism? Mystique of complexity, financial crises, and the reproduction of neoliberal life

    Get PDF
    The burgeoning debate on resilience in international relations has seen the emergence of two polarized views: resilience as a manifestation of neoliberal governmentality and resilience as the expression of a post-neoliberal shift. This article explores whether a post-neoliberal resilience may be possible by reflecting upon the ontology of complexity as unknowability at the heart of this view. It argues that this approach neglects how the discourse of complexity as unknowability is a neoliberal technology of government that is instrumental to advance neoliberal forms of resilience. The second half of the article discusses this argument with reference to the 2008 financial crisis. It shows how a resilience-as-post-neoliberal approach resonates with those dominant narratives which have shrouded the causes and mechanics of the crisis in a mystique of complexity, thus encouraging forms of cognitive and political disengagement. The article concludes that by celebrating local knowledge at the expense of an understanding of global dynamics, post-neoliberal resilience offers an impoverished notion of resistance compliant with the dictates of the neoliberal order

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Full text link
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged)Comment: 35 Pages, 17 Figures, 11 Table

    Factors Affecting Disaster Resilience in Oman: Integrating Stakeholder Analysis and Fuzzy Cognitive Mapping

    Get PDF
    Planning for community resilience to disasters is a process that involves co‐ordinated action within and between relevant organizations and stakeholders, with the goal of reducing disaster risk. The effectiveness of this process is influenced by a range of factors, both positively and negatively, that need to be identified and understood so as to develop organizational capacity to build community resilience to disaster. This study investigates disaster planning and management in Oman, a country facing significant natural hazards, and with a relatively new system of institutional disaster management. Fuzzy cognitive mapping integrated with stakeholder analysis is used to identify relevant factors and their inter‐relationships, and hence provides an improved understanding of disaster governance. Developing an improved understanding of the complexity of this institutional behavior allows identification of opportunities to build greater resilience to disaster through improved planning and emergency response. We make recommendations for improved disaster management in Oman relating to governance (including improved plan dissemination and closer working with community organizations), risk assessment, public education, built environment development, and financing for disaster resilience

    Qualitative study of system-level factors related to genomic implementation

    Get PDF
    PURPOSE: Research on genomic medicine integration has focused on applications at the individual level, with less attention paid to implementation within clinical settings. Therefore, we conducted a qualitative study using the Consolidated Framework for Implementation Research (CFIR) to identify system-level factors that played a role in implementation of genomic medicine within Implementing GeNomics In PracTicE (IGNITE) Network projects. METHODS: Up to four study personnel, including principal investigators and study coordinators from each of six IGNITE projects, were interviewed using a semistructured interview guide that asked interviewees to describe study site(s), progress at each site, and factors facilitating or impeding project implementation. Interviews were coded following CFIR inner-setting constructs. RESULTS: Key barriers included (1) limitations in integrating genomic data and clinical decision support tools into electronic health records, (2) physician reluctance toward genomic research participation and clinical implementation due to a limited evidence base, (3) inadequate reimbursement for genomic medicine, (4) communication among and between investigators and clinicians, and (5) lack of clinical and leadership engagement. CONCLUSION: Implementation of genomic medicine is hindered by several system-level barriers to both research and practice. Addressing these barriers may serve as important facilitators for studying and implementing genomics in practice

    Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis

    Get PDF
    Angiopoietin-1 is an important regulator of endothelial cell survival. Angiopoietin-1 also reduces vascular permeability mediated by vascular endothelial growth factor. The effects of angiopoietin-1 on tumour growth and angiogenesis are controversial. We hypothesised that angiopoietin-1 would decrease tumour growth and ascites formation in peritoneal carcinomatosis. Human colon cancer cells (KM12L4) were transfected with vector (pcDNA) alone (control) or vector containing angiopoietin-1 and injected into the peritoneal cavities of mice. After 30 days, the following parameters were measured: number of peritoneal nodules, ascites volume, and diameter of the largest tumour. Effects of angiopoietin-1 on vascular permeability were investigated using an intradermal Miles assay with conditioned media from transfected cells. Seven of the nine mice in the pcDNA group developed ascites (1.3±0.5 ml (mean±s.e.m.)), whereas no ascites was detectable in the angiopoietin-1 group (0 out of 10) (P<0.01). Number of peritoneal metastases (P<0.05), tumour volume, (P<0.05), vessel counts (P<0.01), and tumour cell proliferation (P<0.01) were significantly reduced in angiopoietin-1-expressing tumours. Conditioned medium from angiopoietin-1-transfected cells decreased vascular permeability more than did conditioned medium from control cells (P<0.05). Our results suggest that angiopoietin-1 is an important mediator of angiogenesis and vascular permeability and thus could theoretically serve as an anti-neoplastic agent for patients with carcinomatosis from colorectal cancer

    Flaring Stars in a Non-targeted mm-wave Survey with SPT-3G

    Full text link
    We present a flare star catalog from four years of non-targeted millimeter-wave survey data from the South Pole Telescope (SPT). The data were taken with the SPT-3G camera and cover a 1500-square-degree region of the sky from 20h40m0s20^{h}40^{m}0^{s} to 3h20m0s3^{h}20^{m}0^{s} in right ascension and 42-42^{\circ} to 70-70^{\circ} in declination. This region was observed on a nearly daily cadence from 2019-2022 and chosen to avoid the plane of the galaxy. A short-duration transient search of this survey yields 111 flaring events from 66 stars, increasing the number of both flaring events and detected flare stars by an order of magnitude from the previous SPT-3G data release. We provide cross-matching to Gaia DR3, as well as matches to X-ray point sources found in the second ROSAT all-sky survey. We have detected flaring stars across the main sequence, from early-type A stars to M dwarfs, as well as a large population of evolved stars. These stars are mostly nearby, spanning 10 to 1000 parsecs in distance. Most of the flare spectral indices are constant or gently rising as a function of frequency at 95/150/220 GHz. The timescale of these events can range from minutes to hours, and the peak νLν\nu L_{\nu} luminosities range from 102710^{27} to 103110^{31} erg s1^{-1} in the SPT-3G frequency bands

    Measurement and Modeling of Polarized Atmosphere at the South Pole with SPT-3G

    Full text link
    We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of Austral winter survey data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in Stokes I, Q, and U parameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The signal is most significant at large angular scales, high observing frequency, and low elevation angle. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in Stokes Q and I for 4 years of winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. For the SPT-3G data, downweighting the small fraction of significantly contaminated observations is an effective mitigation strategy. In addition, we present a strategy for further improving sensitivity on large angular scales where maps made in the 220 GHz band are used to measure and subtract the polarized atmosphere signal from the 150 GHz band maps. In observations with the SPT-3G instrument at the South Pole, the polarized atmospheric signal is a well-understood and sub-dominant contribution to the measured noise after implementing the mitigation strategies described here.Comment: 32 pages, 28 figure
    corecore