10,342 research outputs found
Analysis of supersonic conical flows
Method of characteristics analytical technique for flow predictions of supersonic cross flows over conical bodie
Extremal dyonic black holes in D=4 Gauss-Bonnet gravity
We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton
(EMD) theory with higher curvature corrections in the form of the Gauss-Bonnet
density coupled to the dilaton. In the same theory without the Gauss-Bonnet
term the extremal dyon solutions exist only for discrete values of the dilaton
coupling constant . We show that the Gauss-Bonnet term acts as a dyon hair
tonic enlarging the allowed values of to continuous domains in the plane
the second parameter being the magnetic charge. In the limit of the
vanishing curvature coupling (a large magnetic charge) the dyon solutions
obtained tend to the Reissner-Nordstr\"om solution but not to the extremal
dyons of the EMD theory. Both solutions have the same values of the horizon
radius as a function of charges. The entropy of new dyonic black holes
interpolates between the Bekenstein-Hawking value in the limit of the large
magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice
this value for the vanishing magnetic charge. Although an expression for the
entropy can be obtained analytically using purely local near-horizon solutions,
its interpretation as the black hole entropy is legitimate only once the global
black hole solution is known to exist, and we obtain numerically the
corresponding conditions on the parameters. Thus, a purely local analysis is
insufficient to fully understand the entropy of the curvature corrected black
holes. We also find dyon solutions which are not asymptotically flat, but
approach the linear dilaton background at infinity. They describe magnetic
black holes on the electric linear dilaton background.Comment: 19 pages, 3 figures, revtex
PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 1.1)
The Maintenance Document is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the over-all system and each program module of the system. Sufficient detail is given for program maintenance, updating and modification. It is assumed that the reader is familiar with programming and CDC (Control Data Corporation) computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few COMPASS language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are NOS 1.2, NOS/BE and SCOPE 2.1.3 on the CDC 6600, 7600 and Cyber 175 computing systems. The system is comprised of a data management system, a program library, an execution control module and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a separate module called MEC (Module Execution Control) was created to automatically supply most of the JCL cards. In addition to the MEC generated JCL, there is an additional set of user supplied JCL cards to initiate the JCL sequence stored on the system
Improved detectivity of pyroelectric detectors
High detectivity single-element SBN pyroelectric detectors were fabricated. The theory and technology developments related to improved detector performance were identified and formulated. Improved methods of material characterization, thinning, mounting, blackening and amplifier matching are discussed. Detectors with detectivities of 1.3 x 10 to the 9th power square root of Hz/watt at 1 Hz are reported. Factors limiting performance and recommendations for future work are discussed
Flavor symmetry analysis of charmless B --> VP decays
Based upon flavor SU(3) symmetry, we perform global fits to charmless
B decays into one pseudoscalar meson and one vector meson in the final
states. We consider different symmetry breaking schemes and find that the one
implied by na{\"i}ve factorization is slightly favored over the exact symmetry
case. The vertex of the unitarity triangle (UT)
constrained by our fits is consistent with other methods within errors. We have
found large color-suppressed, electroweak penguin and singlet penguin
amplitudes when the spectator quark ends up in the final-state vector meson.
Nontrivial relative strong phases are also required to explain the data. The
best-fit parameters are used to compute branching ratio and CP asymmetry
observables in all of the decay modes, particularly those in the decays
to be measured at the Tevatron and LHC experiments.Comment: 23 pages and 2 plots; updated with ICHEP'08 data and expanded in
discussions and reference
Resonant Auger decay of the core-excited CO molecule in intense X-ray laser fields
The dynamics of the resonant Auger (RA) process of the core-excited
CO(1s) molecule in an intense X-ray laser field is
studied theoretically. The theoretical approach includes the analogue of the
conical intersections of the complex potential energy surfaces of the ground
and `dressed' resonant states due to intense X-ray pulses, taking into account
the decay of the resonance and the direct photoionization of the ground state,
both populating the same final ionic states coherently, as well as the direct
photoionization of the resonance state itself. The light-induced non-adiabatic
effect of the analogue of the conical intersections of the resulting complex
potential energy surfaces gives rise to strong coupling between the electronic,
vibrational and rotational degrees of freedom of the diatomic CO molecule. The
interplay of the direct photoionization of the ground state and of the decay of
the resonance increases dramatically with the field intensity. The coherent
population of a final ionic state via both the direct photoionization and the
resonant Auger decay channels induces strong interference effects with distinct
patterns in the RA electron spectra. The individual impact of these physical
processes on the total electron yield and on the CO electron
spectrum are demonstrated.Comment: 13 figs, 1 tabe
Accuracy of Mesh Based Cosmological Hydrocodes: Tests and Corrections
We perform a variety of tests to determine the numerical resolution of the
cosmological TVD eulerian code developed by Ryu et al (1993). Tests include
512^3 and 256^3 simulations of a Pk=k^{-1} spectrum to check for
self-similarity and comparison of results with those from higher resolution SPH
and grid-based calculations (Frenk et al 1998). We conclude that in regions
where density gradients are not produced by shocks the code degrades resolution
with a Gaussian smoothing (radius) length of 1.7 cells. At shock caused
gradients (for which the code was designed) the smoothing length is 1.1 cells.
Finally, for \beta model fit clusters, we can approximately correct numerical
resolution by the transformation R^2_{core}\to R^2_{core}-(C\Delta l)^2, where
\Delta l is the cell size and C=1.1-1.7. When we use these corrections on our
previously published computations for the SCDM and \Lambda CDM models we find
luminosity weighted, zero redshift, X-ray cluster core radii of (210\pm 86,
280\pm 67)h^{-1}kpc, respectively, which are marginally consistent with
observed (Jones & Forman 1992) values of 50-200h^{-1}kpc. Using the corrected
core radii, the COBE normalized SCDM model predicts the number of bright
L_x>10^{43}erg/s clusters too high by a factor of \sim 20 and the \Lambda CDM
model is consistent with observations.Comment: ApJ in press (1999
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
- …
