742 research outputs found
A model driven approach for software systems reliability
The reliability assurance of software systems from design to deployment level through transformation techniques and model driven approach, is described. Once the reliability mechanisms provided by current component-based development architectures (CBDA) are designed in a platform-independent way, platform-based design and implementation models must be extended. Current CBDAs, such as Enterprise Java Beans, address a considerable range of features to support system reliability. The evaluation aims to test maturity of the approach, its applicability, and the effectiveness of reliability models. The techniques such as process algebras are generally considered time consuming, in regard to software development
The reaction 2H(p,pp)n in three kinematical configurations at E_p = 16 MeV
We measured the cross sections of the H(p,pp)n breakup reaction at
E=16 MeV in three kinematical configurations: the np final-state
interaction (FSI), the co-planar star (CST), and an intermediate-star (IST)
geometry. The cross sections are compared with theoretical predictions based on
the CD Bonn potential alone and combined with the updated 2-exchange
Tucson-Melbourne three-nucleon force (TM99'), calculated without inclusion of
the Coulomb interaction. The resulting excellent agreement between data and
pure CD Bonn predictions in the FSI testifies to the smallness of three-nucleon
force (3NF) effects as well as the insignificance of the Coulomb force for this
particular configuration and energy. The CST also agrees well whereas the IST
results show small deviations between measurements and theory seen before in
the pd breakup space-star geometries which point to possible Coulomb effects.
An additional comparison with EFT predictions (without 3NF) up to order NLO
shows excellent agreement in the FSI case and a rather similar agreement as for
CD Bonn in the CST and IST situations.Comment: 20 pages, 11 figure
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
TCF1(+) hepatitis C virus-specific CD8(+) T cells are maintained after cessation of chronic antigen stimulation.
Differentiation and fate of virus-specific CD8(+) T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1(+)CD127(+)PD1(+) hepatitis C virus (HCV)-specific CD8(+) T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1(+)CD127(+)PD1(+) population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1(hi) HCV-specific CD8(+) T cells. These results suggest the TCF1(+)CD127(+)PD1(+) HCV-specific CD8(+) T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8(+) T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy
Structure and electronic properties of the () SnAu/Au(111) surface alloy
We have investigated the atomic and electronic structure of the
() SnAu/Au(111) surface alloy. Low
energy electron diffraction and scanning tunneling microscopy measurements show
that the native herringbone reconstruction of bare Au(111) surface remains
intact after formation of a long range ordered () SnAu2/Au(111) surface alloy. Angle-resolved
photoemission and two-photon photoemission spectroscopy techniques reveal
Rashba-type spin-split bands in the occupied valence band with comparable
momentum space splitting as observed for the Au(111) surface state, but with a
hole-like parabolic dispersion. Our experimental findings are compared with
density functional theory (DFT) calculation that fully support our experimental
findings. Taking advantage of the good agreement between our DFT calculations
and the experimental results, we are able to extract that the occupied Sn-Au
hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid
bands are of (p, d)-orbital character. Hence, we can conclude that the
Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is
caused by the significant mixing of Au d- to Sn s-states in conjunction with
the strong atomic spin-orbit coupling of Au, i.e., of the substrate.Comment: Copyright:
https://journals.aps.org/authors/transfer-of-copyright-agreement; All
copyrights by AP
Fuzzy cellular model for on-line traffic simulation
This paper introduces a fuzzy cellular model of road traffic that was
intended for on-line applications in traffic control. The presented model uses
fuzzy sets theory to deal with uncertainty of both input data and simulation
results. Vehicles are modelled individually, thus various classes of them can
be taken into consideration. In the proposed approach, all parameters of
vehicles are described by means of fuzzy numbers. The model was implemented in
a simulation of vehicles queue discharge process. Changes of the queue length
were analysed in this experiment and compared to the results of NaSch cellular
automata model.Comment: The original publication is available at http://www.springerlink.co
Algorithms for efficient symbolic detection of faults in context-aware applications.
Context-aware and adaptive applications running on mobile devices pose new challenges for the verification community. Current verification techniques are tailored for different domains (mostly hardware) and the kind of faults that are typical of applications running on mobile devices are difficult (or impossible) to encode using the patterns of ldquotraditionalrdquo verification domains. In this paper we present how techniques similar to the ones used in symbolic model checking can be applied to the verification of context-aware and adaptive applications. More in detail, we show how a model of a context-aware application can be encoded by means of ordered binary decision diagrams and we introduce symbolic algorithms for the verification of a number of properties
An Exactly Solvable Two-Way Traffic Model With Ordered Sequential Update
Within the formalism of matrix product ansatz, we study a two-species
asymmetric exclusion process with backward and forward site-ordered sequential
update. This model, which was originally introduced with the random sequential
update, describes a two-way traffic flow with a dynamic impurity and shows a
phase transition between the free flow and traffic jam. We investigate the
characteristics of this jamming and examine similarities and differences
between our results and those with random sequential update.Comment: 25 pages, Revtex, 7 ps file
- …
