21,970 research outputs found

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    Coupled Cluster Treatment of the Shastry-Sutherland Antiferromagnet

    Full text link
    We consider the zero-temperature properties of the spin-half two-dimensional Shastry-Sutherland antiferromagnet by using a high-order coupled cluster method (CCM) treatment. We find that this model demonstrates various groundstate phases (N\'{e}el, magnetically disordered, orthogonal dimer), and we make predictions for the positions of the phase transition points. In particular, we find that orthogonal-dimer state becomes the groundstate at J2d/J11.477{J}^{d}_2/J_1 \sim 1.477. For the critical point J2c/J1J_2^{c}/J_1 where the semi-classical N\'eel order disappears we obtain a significantly lower value than J2d/J1J_2^{d}/J_1, namely, J2c/J1{J}^{c}_2/J_1 in the range [1.14,1.39][1.14, 1.39]. We therefore conclude that an intermediate phase exists between the \Neel and the dimer phases. An analysis of the energy of a competing spiral phase yields clear evidence that the spiral phase does not become the groundstate for any value of J2J_2. The intermediate phase is therefore magnetically disordered but may exhibit plaquette or columnar dimer ordering.Comment: 6 pages, 5 figure

    Small angle neutron scattering observation of chain retraction after a large step deformation

    Get PDF
    The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales below the tube diameter is accounted for

    Sampling functions for multimode homodyne tomography with a single local oscillator

    Full text link
    We derive various sampling functions for multimode homodyne tomography with a single local oscillator. These functions allow us to sample multimode s-parametrized quasidistributions, density matrix elements in Fock basis, and s-ordered moments of arbitrary order directly from the measured quadrature statistics. The inevitable experimental losses can be compensated by proper modification of the sampling functions. Results of Monte Carlo simulations for squeezed three-mode state are reported and the feasibility of reconstruction of the three-mode Q-function and s-ordered moments from 10^7 sampled data is demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.

    Quantum kagome antiferromagnet in a magnetic field: Low-lying non-magnetic excitations versus valence-bond crystal order

    Get PDF
    We study the ground state properties of a quantum antiferromagnet on the kagome lattice in the presence of a magnetic field, paying particular attention to the stability of the plateau at magnetization 1/3 of saturation and the nature of its ground state. We discuss fluctuations around classical ground states and argue that quantum and classical calculations at the harmonic level do not lead to the same result in contrast to the zero-field case. For spin S=1/2 we find a magnetic gap below which an exponential number of non-magnetic excitations are present. Moreover, such non-magnetic excitations also have a (much smaller) gap above the three-fold degenerate ground state. We provide evidence that the ground state has long-range order of valence-bond crystal type with nine spins in the unit cell.Comment: 5 pages including 4 figures, uses REVTeX4; final version with some small extensions; to appear in Phys. Rev.

    Individually-rational collective choice

    Get PDF
    There is a collection of exogenously given socially-feasible sets, and, for each one of them, each individual in a group chooses from an individually-feasible set. The fact that the product of the individually-feasible sets is larger than the socially-feasible set notwithstanding, there arises no conflict between individual choices. Assuming that individual preferences are random, I characterize rationalizable collective choices

    Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides

    Get PDF
    We study the coherent flow of interacting Bose-condensed atoms in mesoscopic waveguide geometries. Analytical and numerical methods, based on the mean-field description of the condensate, are developed to study both stationary as well as time-dependent propagation processes. We apply these methods to the propagation of a condensate through an atomic quantum dot in a waveguide, discuss the nonlinear transmission spectrum and show that resonant transport is generally suppressed due to an interaction-induced bistability phenomenon. Finally, we establish a link between the nonlinear features of the transmission spectrum and the self-consistent quasi-bound states of the quantum dot.Comment: 23 pages, 16 figure
    corecore