3,043 research outputs found
Reduction of the spin-orbit potential in light drip-line nuclei
The isospin dependence of the spin-orbit interaction in light neutron rich
nuclei is investigated in the framework of relativistic mean field theory. The
magnitude of the spin-orbit potential is considerably reduced in drip line
nuclei, resulting in smaller energy splittings between spin-orbit partners. The
effect does not depend on the parametrization of the effective Lagrangian. The
results are compared with corresponding calculations in the non-relativistic
Skyrme model.Comment: 8 Pages, LateX, 4 P.S. Figures, submit. Phys. Lett.
Microscopic calculation of 240Pu scission with a finite-range effective force
Hartree-Fock-Bogoliubov calculations of hot fission in
have been performed with a newly-implemented code that uses the D1S
finite-range effective interaction. The hot-scission line is identified in the
quadrupole-octupole-moment coordinate space. Fission-fragment shapes are
extracted from the calculations. A benchmark calculation for
is obtained and compared to results in the literature. In
addition, technical aspects of the use of HFB calculations for fission studies
are examined in detail. In particular, the identification of scission
configurations, the sensitivity of near-scission calculations to the choice of
collective coordinates in the HFB iterations, and the formalism for the
adjustment of collective-variable constraints are discussed. The power of the
constraint-adjustment algorithm is illustrated with calculations near the
critical scission configurations with up to seven simultaneous constraints.Comment: 18 pages, 24 figures, to be published in Physical Review
On the Thermodynamic Limit of the Lipkin Model
The thermodynamic limit of the Lipkin model is investigated. While the limit
turns out to be rather elusive, the analysis gives strong indications that the
limit yields two analytically dissociated operators, one for the normal and one
for the deformed phase. While the Lipkin Hamiltonian is hermitian and has a
second order phase transition in finite dimensions (finite particle number),
both properties seem to be destroyed in the thermodynamic limit.Comment: 9 pages, 3 figures to appear in JPhys
Relativistic Hartree-Bogoliubov theory in coordinate space: finite element solution for a nuclear system with spherical symmetry
A C++ code for the solution of the relativistic Hartree-Bogoliubov theory in
coordinate space is presented. The theory describes a nucleus as a relativistic
system of baryons and mesons. The RHB model is applied in the self-consistent
mean-field approximation to the description of ground state properties of
spherical nuclei. Finite range interactions are included to describe pairing
correlations and the coupling to particle continuum states. Finite element
methods are used in the coordinate space discretization of the coupled system
of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and
Klein-Gordon equations for the meson fields. The bisection method is used in
the solution of the resulting generalized algebraic eigenvalue problem, and the
biconjugate gradient method for the systems of linear and nonlinear algebraic
equations, respectively.Comment: PostScript, 32 pages, to be published in Computer Physics
Communictions (1997
Economic Analysis of Insect Control Strategies Using an Integrated Crop Ecosystem Management Model
Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 8 (2006): Economic Analysis of Insect Control Strategies Using an Integrated Crop Ecosystem Management Model. Manuscript IT 06 001. Vol. VIII. September, 2006
Relativistic Hartree-Bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei
The Relativistic Hartree Bogoliubov (RHB) model is applied in the
self-consistent mean-field approximation to the description of the neutron halo
in the mass region above the s-d shell. Pairing correlations and the coupling
to particle continuum states are described by finite range two-body forces.
Finite element methods are used in the coordinate space discretization of the
coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue
equations, and Klein-Gordon equations for the meson fields. Calculations are
performed for the isotopic chains of Ne and C nuclei. We find evidence for the
occurrence of neutron halo in heavier Ne isotopes. The properties of the 1f-2p
orbitals near the Fermi level and the neutron pairing interaction play a
crucial role in the formation of the halo. Our calculations display no evidence
for the neutron halo phenomenon in C isotopes.Comment: 7 pages, Latex, 5 P.S. Figures, To appear in Phys. Rev. Let
Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III: Role of particle-number projection
Starting from HFB-6, we have constructed a new mass table, referred to as
HFB-8, including all the 9200 nuclei lying between the two drip lines over the
range of Z and N > 6 and Z < 122. It differs from HFB-6 in that the wave
function is projected on the exact particle number. Like HFB-6, the isoscalar
effective mass is constrained to the value 0.80 M and the pairing is density
independent. The rms errors of the mass-data fit is 0.635 MeV, i.e. better than
almost all our previous HFB mass formulas. The extrapolations of this new mass
formula out to the drip lines do not differ significantly from the previous
HFB-6 mass formula.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.
Angular momentum projection of cranked Hartree-Fock states: Application to terminating bands in A~44 nuclei
We present the first systematic calculations based on the angular-momentum
projection of cranked Slater determinants. We propose the Iy --> I scheme, by
which one projects the angular momentum I from the 1D cranked state constrained
to the average spin projection of =I. Calculations performed for the
rotational band in 46Ti show that the AMP Iy --> I scheme offers a natural
mechanism for correcting the cranking moment of inertia at low-spins and
shifting the terminating state up by ~2 MeV, in accordance with data. We also
apply this scheme to high-spin states near the band termination in A~44 nuclei,
and compare results thereof with experimental data, shell-model calculations,
and results of the approximate analytical symmetry-restoration method proposed
previously.Comment: 9 RevTeX pages, 8 EPS figures, submitted to Physical Review
Crypto-baryonic Dark Matter
It is proposed that dark matter could consist of compressed collections of
atoms (or metallic matter) encapsulated into, for example, 20 cm big pieces of
a different phase. The idea is based on the assumption that there exists at
least one other phase of the vacuum degenerate with the usual one. Apart from
the degeneracy of the phases we only assume Standard Model physics. The other
phase has a Higgs VEV appreciably smaller than in the usual electroweak vacuum.
The balls making up the dark matter are very difficult to observe directly, but
inside dense stars may expand eating up the star and cause huge explosions
(gamma ray bursts). The ratio of dark matter to ordinary baryonic matter is
expressed as a ratio of nuclear binding energies and predicted to be about 5.Comment: 9 pages. Published version with shorter abstract and new referenc
- …
