8,041 research outputs found
Active optical clock based on four-level quantum system
Active optical clock, a new conception of atomic clock, has been proposed
recently. In this report, we propose a scheme of active optical clock based on
four-level quantum system. The final accuracy and stability of two-level
quantum system are limited by second-order Doppler shift of thermal atomic
beam. To three-level quantum system, they are mainly limited by light shift of
pumping laser field. These limitations can be avoided effectively by applying
the scheme proposed here. Rubidium atom four-level quantum system, as a typical
example, is discussed in this paper. The population inversion between
and states can be built up at a time scale of s.
With the mechanism of active optical clock, in which the cavity mode linewidth
is much wider than that of the laser gain profile, it can output a laser with
quantum-limited linewidth narrower than 1 Hz in theory. An experimental
configuration is designed to realize this active optical clock.Comment: 5 page
The 7-channel FIR HCN Interferometer on J-TEXT Tokamak
A seven-channel far-infrared hydrogen cyanide (HCN) laser interferometer has
been established aiming to provide the line integrated plasma density for the
J-TEXT experimental scenarios. A continuous wave glow discharge HCN laser
designed with a cavity length 3.4 m is used as the laser source with a
wavelength of 337 {\mu}m and an output power up to 100 mW. The system is
configured as a Mach-Zehnder type interferometer. Phase modulation is achieved
by a rotating grating, with a modulation frequency of 10 kHz which corresponds
to the temporal resolution of 0.1 ms. The beat signal is detected by TGS
detector. The phase shift induced by the plasma is derived by the comparator
with a phase sensitivity of 0.06 fringe. The experimental results measured by
the J-TEXT interferometer are presented in details. In addition, the inversed
electron density profile done by a conventional approach is also given. The
kinematic viscosity of dimethyl silicone and vibration control is key issues
for the system performance. The laser power stability under different kinematic
viscosity of silicone oil is presented. A visible improvement of measured
result on vibration reduction is shown in the paper.Comment: conference (15th-International Symposium on Laser-Aided Plasma
Diagnostics
Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies
The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on
superconductivity and electronic properties have been studied. A significant
enhancement of the superconducting transition temperature (TC) up to 21K was
observed in the most Fe deficient film (x=0.8). Based on the observed and
simulated structural variation results, there is a high possibility that Fe
vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows
a strong relationship with the lattice strain effect induced by Fe vacancies.
Importantly, the presence of Fe vacancies alters the charge carrier population
by introducing electron charge carriers, with the Fe deficient film showing
more metallic behavior than the defect-free film. Our study provides a means to
enhance the superconductivity and tune the charge carriers via Fe vacancy, with
no reliance on chemical doping.Comment: 15 pages, 4 figure
How energy and water availability constrain vegetation water-use along the North Australian Tropical Transect
© 2016, Gorgan Univ Agricultural Sciences and Natural Resources. All rights reserved. Energy and water availability were identified as the first order controls of evapotranspiration (ET) in ecohyrodrology. With a ~1,000 km precipitation gradient and distinct wet-dry climate, the North Australian Tropical Transect (NATT) was well suited for evaluating how energy and water availabilities constrain water use by vegetation, but has not been done yet. In this study, we addressed this question using Budyko framework that quantifies the evapotranspiration as a function of energy-limited rate and precipitation. Path analysis was adopted to evaluate the dependencies of water and carbon fluxes on ecohydrological variables. Results showed that the major drivers of water and carbon fluxes varied between wet and dry savannas: down-welling solar radiation was the primary driver of the wet season ET in mesic savanna ecosystems, while soil water availability was the primary driver in inland dryland ecosystems. Vegetation can significantly regulate water and carbon fluxes of savanna ecosystems, as supported by the strong link of LAI with ET and GPP from path analysis. Vegetation structure (i.e. the tree:grass ratio) at each site can regulate the impact of climatic constraint on ET and GPP. Sites with a low tree:grass ratio had ET and GPP that exceeded sites with high a tree:grass ratio when the grassy understory was active. Identifying the relative importance of these climate drivers and vegetation structure on seasonal patterns of water use by these ecosystems will help us decide our priorities when improving the estimates of ET and GPP
Measurement of the Inclusive Charm Cross Section at 4.03 GeV and 4.14 GeV
The cross section for charmed meson production at and 4.14
GeV has been measured with the Beijing Spectrometer. The measurement was made
using 22.3 of data collected at 4.03 GeV and 1.5
of data collected at 4.14 GeV. Inclusive observed cross sections for
the production of charged and neutral D mesons and momentum spectra are
presented. Observed cross sections were radiatively corrected to obtain tree
level cross sections. Measurements of the total hadronic cross section are
obtained from the charmed meson cross section and an extrapolation of results
from below the charm threshold.Comment: 11 pages, 13 figures. The top level tex file is paper.tex. It builds
the paper from other tex files in this .tar and the .eps file
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
Measurement of Neutrino-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor
The elastic scattering cross-section was measured with
a CsI(Tl) scintillating crystal array having a total mass of 187kg. The
detector was exposed to an average reactor flux of
at the Kuo-Sheng Nuclear Power
Station. The experimental design, conceptual merits, detector hardware, data
analysis and background understanding of the experiment are presented. Using
29882/7369 kg-days of Reactor ON/OFF data, the Standard Model(SM) electroweak
interaction was probed at the squared 4-momentum transfer range of . The ratio of experimental to SM cross-sections
of was measured. Constraints on
the electroweak parameters were placed, corresponding to a weak
mixing angle measurement of \s2tw = 0.251 \pm 0.031({\it stat}) \pm
0.024({\it sys}) . Destructive interference in the SM \nuebar -e process was
verified. Bounds on anomalous neutrino electromagnetic properties were placed:
neutrino magnetic moment at \mu_{\nuebar}< 2.2 \times 10^{-10} \mu_{\rm B}
and the neutrino charge radius at -2.1 \times 10^{-32} ~{\rm cm^{2}} <
\nuchrad < 3.3 \times 10^{-32} ~{\rm cm^{2}}, both at 90% confidence level.Comment: 18 Figures, 7 Tables; published version as V2 with minor revision
from V
Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev
Using the upgraded Beijing Spectrometer (BESII), we have measured the total
cross section for annihilation into hadronic final states at
center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of ,
, are determined.Comment: Submitted to Phys. Rev. Let
The Physics of Kondo Impurities in Graphene
This article summarizes our understanding of the Kondo effect in graphene,
primarily from a theoretical perspective. We shall describe different ways to
create magnetic moments in graphene, either by adatom deposition or via
defects. For dilute moments, the theoretical description is in terms of
effective Anderson or Kondo impurity models coupled to graphene's Dirac
electrons. We shall discuss in detail the physics of these models, including
their quantum phase transitions and the effect of carrier doping, and confront
this with existing experimental data. Finally, we point out connections to
other quantum impurity problems, e.g., in unconventional superconductors,
topological insulators, and quantum spin liquids.Comment: 27 pages, 8 figs. Review article prepared for Rep. Prog. Phys. ("key
issues" section). (v2) Final version as publishe
- …
