2,966 research outputs found
Equation of state for agents on graphs
Choice models for populations of agents on graphs are studied in terms of
statistical thermodynamics. Equations of state are derived and discussed for
different connectivity schemes, utility approximations, and temperature and
volume regimes. Analogies to ideal classical and quantum gases are found and
features specific for network systems are discussed.Comment: The Eur. Phys. J. B, in prin
Association-solvation characteristic of fuels and lubricating and hydraulic oils
For abstract see A78-2675
Kaon physics with the KLOE detector
In this paper we discuss the recent finalized analyses by the KLOE experiment
at DANE: the CPT and Lorentz invariance test with entangled pairs, and the precision measurement of the branching fraction of
the decay . We also present the
status of an ongoing analysis aiming to precisely measure the mass
Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography
Currently inorganic scintillator detectors are used in all commercial Time of
Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration
investigates a possibility of construction of a PET scanner from plastic
scintillators which would allow for single bed imaging of the whole human body.
This paper describes a novel method of hit-position reconstruction based on
sampled signals and an example of an application of the method for a single
module with a 30 cm long plastic strip, read out on both ends by Hamamatsu
R4998 photomultipliers. The sampling scheme to generate a vector with samples
of a PET event waveform with respect to four user-defined amplitudes is
introduced. The experimental setup provides irradiation of a chosen position in
the plastic scintillator strip with an annihilation gamma quanta of energy
511~keV. The statistical test for a multivariate normal (MVN) distribution of
measured vectors at a given position is developed, and it is shown that signals
sampled at four thresholds in a voltage domain are approximately normally
distributed variables. With the presented method of a vector analysis made out
of waveform samples acquired with four thresholds, we obtain a spatial
resolution of about 1 cm and a timing resolution of about 80 p
Compressive Sensing of Signals Generated in Plastic Scintillators in a Novel J-PET Instrument
The J-PET scanner, which allows for single bed imaging of the whole human
body, is currently under development at the Jagiellonian University. The dis-
cussed detector offers improvement of the Time of Flight (TOF) resolution due
to the use of fast plastic scintillators and dedicated electronics allowing for
sam- pling in the voltage domain of signals with durations of few nanoseconds.
In this paper we show that recovery of the whole signal, based on only a few
samples, is possible. In order to do that, we incorporate the training signals
into the Tikhonov regularization framework and we perform the Principal
Component Analysis decomposition, which is well known for its compaction
properties. The method yields a simple closed form analytical solution that
does not require iter- ative processing. Moreover, from the Bayes theory the
properties of regularized solution, especially its covariance matrix, may be
easily derived. This is the key to introduce and prove the formula for
calculations of the signal recovery error. In this paper we show that an
average recovery error is approximately inversely proportional to the number of
acquired samples
Application of the Compress Sensing Theory for Improvement of the TOF Resolution in a Novel J-PET Instrument
Nowadays, in Positron Emission Tomography (PET) systems, a Time of Flight
information is used to improve the image reconstruction process. In Time of
Flight PET (TOF-PET), fast detectors are able to measure the difference in the
arrival time of the two gamma rays, with the precision enabling to shorten
significantly a range along the line-of-response (LOR) where the annihilation
occurred. In the new concept, called J-PET scanner, gamma rays are detected in
plastic scintillators. In a single strip of J-PET system, time values are
obtained by probing signals in the amplitude domain. Owing to Compress Sensing
theory, information about the shape and amplitude of the signals is recovered.
In this paper we demonstrate that based on the acquired signals parameters, a
better signal normalization may be provided in order to improve the TOF
resolution. The procedure was tested using large sample of data registered by a
dedicated detection setup enabling sampling of signals with 50 ps intervals.
Experimental setup provided irradiation of a chosen position in the plastic
scintillator strip with annihilation gamma quanta
Precision measurement of the Dalitz plot distribution with the KLOE detector
Using fb of data collected with
the KLOE detector at DANE, the Dalitz plot distribution for the decay is studied with the world's largest sample of events. The Dalitz plot density is parametrized as a polynomial
expansion up to cubic terms in the normalized dimensionless variables and
. The experiment is sensitive to all charge conjugation conserving terms of
the expansion, including a term. The statistical uncertainty of all
parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl
Measurement of the branching ratio of the decay
From the 2002 data taking with a neutral kaon beam extracted from the
CERN-SPS, the NA48/1 experiment observed 97 candidates with a background contamination of events.
From this sample, the BR() is measured to be
A new limit on the CP violating decay KS -> 3pi0 with the KLOE experiment
We have carried out a new direct search for the CP violating decay KS -> 3pi0
with 1.7 fb^-1 of e+e- collisions collected by the KLOE detector at the
phi-factory DAFNE. We have searched for this decay in a sample of about 5.9 x
10^8 KS KL events tagging the KS by means of the KL interaction in the
calorimeter and requiring six prompt photons. With respect to our previous
search, the analysis has been improved by increasing of a factor four the
tagged sample and by a more effective background rejection of fake KS tags and
spurious clusters. We find no candidates in data and simulated background
samples, while we expect 0.12 standard model events. Normalizing to the number
of KS -> 2pi0 events in the same sample, we set the upper limit on BR(KS ->
3pi0 < 2.6 x 10^-8 at 90% C.L., five times lower than the previous limit. We
also set the upper limit on the eta_000 parameter, |eta_000 | < 0.0088 at 90%
C.L., improving by a factor two the latest direct measurement.Comment: Accepted for publication in Physics Letters B (15 pages, 13 figures
- …
