110,124 research outputs found

    Experimental and theoretical research on the electrical conductivity of a liquid desiccant for the liquid desiccant air-conditioning system: LiCl aqueous solution

    Get PDF
    At present, the energy consumption in buildings occupies a large proportion of total energy use, and air-conditionings cost a large proportion of energy in the buildings. The liquid desiccant air-conditioning system has a good energy saving potential and the electrodialysis (ED) regeneration is a reliable choice for the liquid desiccant regeneration. In order to establish the energy consumption model and the performance coefficient model of liquid desiccant air-conditioning system based on ED regeneration using LiCl, experimental and theoretical research on the electrical conductivity of LiCl aqueous solution with a lot of concentrations and temperatures was conducted in this paper. The results show that when polynomial degrees of the mass concentration and the temperature of the LiCl aqueous solution are both 3, the electrical conductivity model for the LiCl aqueous solution is most suitable as its simplicity and high accuracy. Moreover, when the concentration is 36% and the temperature is 22 °C, the liquid desiccant cooling system has the maximum COP of about 5. Finally, a case study of a small office room was conducted, and the result shows that the liquid desiccant cooling system based on electrodialysis regeneration has a good energy-saving potential

    Definitions of entanglement entropy of spin systems in the valence-bond basis

    Full text link
    The valence-bond structure of spin-1/2 Heisenberg antiferromagnets is closely related to quantum entanglement. We investigate measures of entanglement entropy based on transition graphs, which characterize state overlaps in the overcomplete valence-bond basis. The transition graphs can be generated using projector Monte Carlo simulations of ground states of specific hamiltonians or using importance-sampling of valence-bond configurations of amplitude-product states. We consider definitions of entanglement entropy based on the bonds or loops shared by two subsystems (bipartite entanglement). Results for the bond-based definition agrees with a previously studied definition using valence-bond wave functions (instead of the transition graphs, which involve two states). For the one dimensional Heisenberg chain, with uniform or random coupling constants, the prefactor of the logarithmic divergence with the size of the smaller subsystem agrees with exact results. For the ground state of the two-dimensional Heisenberg model (and also Neel-ordered amplitude-product states), there is a similar multiplicative violation of the area law. In contrast, the loop-based entropy obeys the area law in two dimensions, while still violating it in one dimension - both behaviors in accord with expectations for proper measures of entanglement entropy.Comment: 9 pages, 8 figures. v2: significantly expande

    Orbital Resonance Mode in Superconducting Iron Pnictides

    Full text link
    We show that the fluctuations associated with ferro orbital order in the dxzd_{xz} and dyzd_{yz} orbitals can develop a sharp resonance mode in the superconducting state with a nodeless gap on the Fermi surface. This orbital resonance mode appears below the particle-hole continuum and is analogous to the magnetic resonance mode found in various unconventional superconductors. If the pairing symmetry is s±s_{\pm}, a dynamical coupling between the orbital ordering and the d-wave subdominant pairing channels is present by symmetry. Therefore the nature of the resonance mode depends on the relative strengths of the fluctuations in these two channels, which could vary significantly for different families of the iron based superconductors. The application of our theory to a recent observation of a new δ\delta-function-like peak in the B1g_{1g} Raman spectrum of Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 is discussed.Comment: 6 pages, 3 figure
    corecore