132 research outputs found
Localized spectral asymptotics for boundary value problems and correlation effects in the free Fermi gas in general domains
We rigorously derive explicit formulae for the pair correlation function of
the ground state of the free Fermi gas in the thermodynamic limit for general
geometries of the macroscopic regions occupied by the particles and arbitrary
dimension. As a consequence we also establish the asymptotic validity of the
local density approximation for the corresponding exchange energy. At constant
density these formulae are universal and do not depend on the geometry of the
underlying macroscopic domain. In order to identify the correlation effects in
the thermodynamic limit, we prove a local Weyl law for the spectral asymptotics
of the Laplacian for certain quantum observables which are themselves dependent
on a small parameter under very general boundary conditions
Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential
Coupled-mode systems are used in physical literature to simplify the
nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic
potential and to approximate localized solutions called gap solitons by
analytical expressions involving hyperbolic functions. We justify the use of
the one-dimensional stationary coupled-mode system for a relevant elliptic
problem by employing the method of Lyapunov--Schmidt reductions in Fourier
space. In particular, existence of periodic/anti-periodic and decaying
solutions is proved and the error terms are controlled in suitable norms. The
use of multi-dimensional stationary coupled-mode systems is justified for
analysis of bifurcations of periodic/anti-periodic solutions in a small
multi-dimensional periodic potential.Comment: 18 pages, no figure
Entropy of semiclassical measures for nonpositively curved surfaces
We study the asymptotic properties of eigenfunctions of the Laplacian in the
case of a compact Riemannian surface of nonpositive sectional curvature. We
show that the Kolmogorov-Sinai entropy of a semiclassical measure for the
geodesic flow is bounded from below by half of the Ruelle upper bound. We
follow the same main strategy as in the Anosov case (arXiv:0809.0230). We focus
on the main differences and refer the reader to (arXiv:0809.0230) for the
details of analogous lemmas.Comment: 20 pages. This note provides a detailed proof of a result announced
in appendix A of a previous work (arXiv:0809.0230, version 2
Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W+/-, II
We do the spectral analysis of the Hamiltonian for the weak leptonic decay of
the gauge bosons W+/-. Using Mourre theory, it is shown that the spectrum
between the unique ground state and the first threshold is purely absolutely
continuous. Neither sharp neutrino high energy cutoff nor infrared
regularization are assumed.Comment: To appear in Ann. Henri Poincar\'
Fractal Weyl laws for chaotic open systems
We present a result relating the density of quantum resonances for an open
chaotic system to the fractal dimension of the associated classical repeller.
The result is supported by numerical computation of the resonances of the
system of n disks on a plane. The result generalizes the Weyl law for the
density of states of a closed system to chaotic open systems.Comment: revtex4, 4 pages, 3 figure
Delocalization of slowly damped eigenmodes on Anosov manifolds
We look at the properties of high frequency eigenmodes for the damped wave
equation on a compact manifold with an Anosov geodesic flow. We study
eigenmodes with spectral parameters which are asymptotically close enough to
the real axis. We prove that such modes cannot be completely localized on
subsets satisfying a condition of negative topological pressure. As an
application, one can deduce the existence of a "strip" of logarithmic size
without eigenvalues below the real axis under this dynamical assumption on the
set of undamped trajectories.Comment: 28 pages; compared with version 1, minor modifications, add two
reference
Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields
We show how to approximate Dirac dynamics for electronic initial states by
semi- and non-relativistic dynamics. To leading order, these are generated by
the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is
related to and , respectively. Higher-order
corrections can in principle be computed to any order in the small parameter
v/c which is the ratio of typical speeds to the speed of light. Our results
imply the dynamics for electronic and positronic states decouple to any order
in v/c << 1.
To decide whether to get semi- or non-relativistic effective dynamics, one
needs to choose a scaling for the kinetic momentum operator. Then the effective
dynamics are derived using space-adiabatic perturbation theory by Panati et. al
with the novel input of a magnetic pseudodifferential calculus adapted to
either the semi- or non-relativistic scaling.Comment: 42 page
Limiting Carleman weights and anisotropic inverse problems
In this article we consider the anisotropic Calderon problem and related
inverse problems. The approach is based on limiting Carleman weights,
introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean
case. We characterize those Riemannian manifolds which admit limiting Carleman
weights, and give a complex geometrical optics construction for a class of such
manifolds. This is used to prove uniqueness results for anisotropic inverse
problems, via the attenuated geodesic X-ray transform. Earlier results in
dimension were restricted to real-analytic metrics.Comment: 58 page
Distribution of resonances for open quantum maps
We analyze simple models of classical chaotic open systems and of their
quantizations (open quantum maps on the torus). Our models are similar to
models recently studied in atomic and mesoscopic physics. They provide a
numerical confirmation of the fractal Weyl law for the density of quantum
resonances of such systems. The exponent in that law is related to the
dimension of the classical repeller (or trapped set) of the system. In a
simplified model, a rigorous argument gives the full resonance spectrum, which
satisfies the fractal Weyl law. For this model, we can also compute a quantity
characterizing the fluctuations of conductance through the system, namely the
shot noise power: the value we obtain is close to the prediction of random
matrix theory.Comment: 60 pages, no figures (numerical results are shown in other
references
Multiphase semiclassical approximation of the one-dimensional harmonic crystal: I. The periodic case
- …
