132 research outputs found

    Localized spectral asymptotics for boundary value problems and correlation effects in the free Fermi gas in general domains

    Full text link
    We rigorously derive explicit formulae for the pair correlation function of the ground state of the free Fermi gas in the thermodynamic limit for general geometries of the macroscopic regions occupied by the particles and arbitrary dimension. As a consequence we also establish the asymptotic validity of the local density approximation for the corresponding exchange energy. At constant density these formulae are universal and do not depend on the geometry of the underlying macroscopic domain. In order to identify the correlation effects in the thermodynamic limit, we prove a local Weyl law for the spectral asymptotics of the Laplacian for certain quantum observables which are themselves dependent on a small parameter under very general boundary conditions

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure

    Entropy of semiclassical measures for nonpositively curved surfaces

    Full text link
    We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface of nonpositive sectional curvature. We show that the Kolmogorov-Sinai entropy of a semiclassical measure for the geodesic flow is bounded from below by half of the Ruelle upper bound. We follow the same main strategy as in the Anosov case (arXiv:0809.0230). We focus on the main differences and refer the reader to (arXiv:0809.0230) for the details of analogous lemmas.Comment: 20 pages. This note provides a detailed proof of a result announced in appendix A of a previous work (arXiv:0809.0230, version 2

    Spectral theory for a mathematical model of the weak interaction: The decay of the intermediate vector bosons W+/-, II

    Full text link
    We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons W+/-. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high energy cutoff nor infrared regularization are assumed.Comment: To appear in Ann. Henri Poincar\'

    Fractal Weyl laws for chaotic open systems

    Full text link
    We present a result relating the density of quantum resonances for an open chaotic system to the fractal dimension of the associated classical repeller. The result is supported by numerical computation of the resonances of the system of n disks on a plane. The result generalizes the Weyl law for the density of states of a closed system to chaotic open systems.Comment: revtex4, 4 pages, 3 figure

    Delocalization of slowly damped eigenmodes on Anosov manifolds

    Full text link
    We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a "strip" of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Comment: 28 pages; compared with version 1, minor modifications, add two reference

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+ξ2\sqrt{m^2 + \xi^2} and ξ2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Limiting Carleman weights and anisotropic inverse problems

    Get PDF
    In this article we consider the anisotropic Calderon problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman weights, and give a complex geometrical optics construction for a class of such manifolds. This is used to prove uniqueness results for anisotropic inverse problems, via the attenuated geodesic X-ray transform. Earlier results in dimension n3n \geq 3 were restricted to real-analytic metrics.Comment: 58 page

    Distribution of resonances for open quantum maps

    Get PDF
    We analyze simple models of classical chaotic open systems and of their quantizations (open quantum maps on the torus). Our models are similar to models recently studied in atomic and mesoscopic physics. They provide a numerical confirmation of the fractal Weyl law for the density of quantum resonances of such systems. The exponent in that law is related to the dimension of the classical repeller (or trapped set) of the system. In a simplified model, a rigorous argument gives the full resonance spectrum, which satisfies the fractal Weyl law. For this model, we can also compute a quantity characterizing the fluctuations of conductance through the system, namely the shot noise power: the value we obtain is close to the prediction of random matrix theory.Comment: 60 pages, no figures (numerical results are shown in other references
    corecore