113,642 research outputs found
Dynamics of Vesicle Formation from Lipid Droplet: Mechanism and Controllability
A coarse-grained model developed by Marrink et al. [J. Phys. Chem. B 111,
7812 (2007)] is applied to investigate vesiculation of lipid
[dipalmitoylphosphatidylcholine (DPPC)] droplets in water. Three kinds of
morphologies of micelles are found with increasing lipid droplet size. When the
initial lipid droplet is smaller, the equilibrium structure of the droplet is a
spherical micelle. When the initial lipid droplet is larger, the lipid ball
starts to transform into a disk micelle or vesicle. The mechanism of vesicle
formation from a lipid ball is analyzed from the self-assembly of DPPC on the
molecular level, and the morphological transition from disk to vesicle with
increasing droplet size is demonstrated. Importantly, we discover that the
transition point is not very sharp, and for a fixed-size lipid ball, the disk
and vesicle appear with certain probabilities. The splitting phenomenon, i.e.,
the formation of a disk/vesicle structure from a lipid droplet, is explained by
applying a hybrid model of the Helfrich membrane theory. The elastic module of
the DPPC bilayer and the smallest size of a lipid droplet for certain formation
of a vesicle are successfully predicted.Comment: 22 pages, 11 figures Submitted to J. Chem. Phy
A Note on the DQ Analysis of Anisotropic Plates
Recently, Bert, Wang and Striz [1, 2] applied the differential quadrature
(DQ) and harmonic differential quadrature (HDQ) methods to analyze static and
dynamic behaviors of anisotropic plates. Their studies showed that the methods
were conceptually simple and computationally efficient in comparison to other
numerical techniques. Based on some recent work by the present author [3, 4],
the purpose of this note is to further simplify the formulation effort and
improve computing efficiency in applying the DQ and HDQ methods for these
cases
A cusp electron gun for millimeter wave gyrodevices
The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a "smooth" magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio alpha of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC
- …
