1,009 research outputs found
Direct detection and characterization of foot-and-mouth disease virus in East Africa using a field-ready real-time PCR platform
Effective control and monitoring of foot-and-mouth disease (FMD) relies upon rapid and accurate disease confirmation. Currently, clinical samples are usually tested in reference laboratories using standardized assays recommended by The World Organisation for Animal Health (OIE). However, the requirements for prompt and serotype-specific diagnosis during FMD outbreaks, and the need to establish robust laboratory testing capacity in FMD-endemic countries have motivated the development of simple diagnostic platforms to support local decision-making. Using a portable thermocycler, the T-COR™ 8, this study describes the laboratory and field evaluation of a commercially available, lyophilized pan-serotype-specific real-time RT-PCR (rRT-PCR) assay and a newly available FMD virus (FMDV) typing assay (East Africa-specific for serotypes: O, A, Southern African Territories [SAT] 1 and 2). Analytical sensitivity, diagnostic sensitivity and specificity of the pan-serotype-specific lyophilized assay were comparable to that of an OIE-recommended laboratory-based rRT-PCR (determined using a panel of 57 FMDV-positive samples and six non-FMDV vesicular disease samples for differential diagnosis). The FMDV-typing assay was able to correctly identify the serotype of 33/36 FMDV-positive samples (no cross-reactivity between serotypes was evident). Furthermore, the assays were able to accurately detect and type FMDV RNA in multiple sample types, including epithelial tissue suspensions, serum, oesophageal–pharyngeal (OP) fluid and oral swabs, both with and without the use of nucleic acid extraction. When deployed in laboratory and field settings in Tanzania, Kenya and Ethiopia, both assays reliably detected and serotyped FMDV RNA in samples (n = 144) collected from pre-clinical, clinical and clinically recovered cattle. These data support the use of field-ready rRT-PCR platforms in endemic settings for simple, highly sensitive and rapid detection and/or characterization of FMDV
A probabilistic analysis of argument cogency
This paper offers a probabilistic treatment of the conditions for argument cogency as endorsed in informal logic: acceptability, relevance, and sufficiency. Treating a natural language argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on which the RSA conditions depend, namely: change in the commitment to the reason, the reason’s sensitivity and selectivity to the claim, one’s prior commitment to the claim, and the contextually determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed serve to correct, the informal understanding and applications of the RSA criteria concerning their conceptual dependence, their function as update-thresholds, and their status as obligatory rather than permissive norms, but also show how these formal and informal normative approachs can in fact align
Critical Dynamics of a Vortex Loop Model for the Superconducting Transition
We calculate analytically the dynamic critical exponent measured in
Monte Carlo simulations for a vortex loop model of the superconducting
transition, and account for the simulation results. In the weak screening
limit, where magnetic fluctuations are neglected, the dynamic exponent is found
to be . In the perfect screening limit, . We relate
to the actual value of observable in experiments and find that , consistent with some experimental results
Explaining Evidence Denial as Motivated Pragmatically Rational Epistemic Irrationality
This paper introduces a model for evidence denial that explains this behavior as a manifestation of rationality and it is based on the contention that social values (measurable as utilities) often underwrite these sorts of responses. Moreover, it is contended that the value associated with group membership in particular can override epistemic reason when the expected utility of a belief or belief system is great. However, it is also true that it appears to be the case that it is still possible for such unreasonable believers to reverse this sort of dogmatism and to change their beliefs in a way that is epistemically rational. The conjecture made here is that we should expect this to happen only when the expected utility of the beliefs in question dips below a threshold where the utility value of continued dogmatism and the associated group membership is no longer sufficient to motivate defusing the counter-evidence that tells against such epistemically irrational beliefs
Facts, Values and Quanta
Quantum mechanics is a fundamentally probabilistic theory (at least so far as
the empirical predictions are concerned). It follows that, if one wants to
properly understand quantum mechanics, it is essential to clearly understand
the meaning of probability statements. The interpretation of probability has
excited nearly as much philosophical controversy as the interpretation of
quantum mechanics. 20th century physicists have mostly adopted a frequentist
conception. In this paper it is argued that we ought, instead, to adopt a
logical or Bayesian conception. The paper includes a comparison of the orthodox
and Bayesian theories of statistical inference. It concludes with a few remarks
concerning the implications for the concept of physical reality.Comment: 30 pages, AMS Late
Nature of the Low Field Transition in the Mixed State of High Temperature Superconductors
We have numerically studied the statics and dynamics of a model
three-dimensional vortex lattice at low magnetic fields. For the statics we use
a frustrated 3D XY model on a stacked triangular lattice. We model the dynamics
as a coupled network of overdamped resistively-shunted Josephson junctions with
Langevin noise. At low fields, there is a weakly first-order phase transition,
at which the vortex lattice melts into a line liquid. Phase coherence parallel
to the field persists until a sharp crossover, conceivably a phase transition,
near which develops at the same temperature as an infinite
vortex tangle. The calculated flux flow resistivity in various geometries near
closely resembles experiment. The local density of field induced
vortices increases sharply near , corresponding to the experimentally
observed magnetization jump. We discuss the nature of a possible transition or
crossover at (B) which is distinct from flux lattice melting.Comment: Updated references. 46 pages including low quality 25 eps figures.
Contact [email protected] or visit
http://www.physics.ohio-state.edu:80/~ryu/ for better figures and additional
movie files from simulations. To be published in Physical Review B1 01Jun9
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
- …
