21,189 research outputs found
The Dipole Anisotropy of the First All-Sky X-ray Cluster Sample
We combine the recently published CIZA galaxy cluster catalogue with the
XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters
in order to examine the origins of the Local Group's peculiar velocity without
the use of reconstruction methods to fill the traditional Zone of Avoidance.
The advantages of this approach are (i) X-ray emitting clusters tend to trace
the deepest potential wells and therefore have the greatest effect on the
dynamics of the Local Group and (ii) our all-sky sample provides data for
nearly a quarter of the sky that is largely incomplete in optical cluster
catalogues. We find that the direction of the Local Group's peculiar velocity
is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc
away, but that the amplitude of its dipole motion is largely set between 140
and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that
without Virgo included, roughly ~70% of our dipole signal comes from mass
concentrations at large distances (>60 h^-1 Mpc) and does not flatten,
indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc.
We also present a detailed discussion of our dipole profile, linking observed
features to the structures and superclusters that produce them. We find that
most of the dipole signal can be attributed to the Shapley supercluster
centered at about 150 h^-1 Mpc and a handful of very massive individual
clusters, some of which are newly discovered and lie well in the Zone of
Avoidance.Comment: 15 Pages, 9 Figures. Accepted by Ap
The Power Spectrum of the PSC Redshift Survey
We measure the redshift-space power spectrum P(k) for the recently completed
IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500
galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with
simulations shows that our estimated errors on P(k) are realistic, and that
systematic errors due to the finite survey volume are small for wavenumbers k
>~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between
those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller
error bars; it falls slightly more steeply to smaller scales. We have fitted
families of CDM-like models using the Peacock-Dodds formula for non-linear
evolution; the results are somewhat sensitive to the assumed small-scale
velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s
yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if
\sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded.
There is little evidence for any `preferred scale' in the power spectrum or
non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures.
Accepted by MNRA
Geometry and topology of two kinds of extreme Reissner-Nordstrm-anti-de Sitter black holes
Different geometrical and topological properties have been shown for two
kinds of extreme Reissner-Nordstrm-anti-de Sitter black holes. The
relationship between the geometrical properties and the intrinsic
thermodynamical properties has been made explicit.Comment: Latex, 12 pages, 4 figure
Geometry of the extreme Kerr black holes
Geometrical properties of the extreme Kerr black holes in the topological
sectors of nonextreme and extreme configurations are studied. We find that the
Euler characteristic plays an essential role to distinguish these two kinds of
extreme black holes. The relationship between the geometrical properties and
the intrinsic thermodynamics are investigated.Comment: Latex version, 10 page
Supra-oscillatory critical temperature dependence of Nb-Ho bilayers
We investigate the critical temperature Tc of a thin s-wave superconductor
(Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function
of the Ho layer thickness, we observe multiple oscillations of Tc superimposed
on a slow decay, that we attribute to the influence of the Ho on the Nb
proximity effect. Because of Ho inhomogeneous magnetization, singlet and
triplet pair correlations are present in the bilayers. We take both into
consideration when solving the self consistent Bogoliubov-de Gennes equations,
and we observe a reasonable agreement. We also observe non-trivial transitions
into the superconducting state, the zero resistance state being attained after
two successive transitions which appear to be associated with the magnetic
structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5
figure
Charged Annular Disks and Reissner-Nordstr\"{o}m Type Black Holes from Extremal Dust
We present the first analytical superposition of a charged black hole with an
annular disk of extremal dust. In order to obtain the solutions, we first solve
the Einstein-Maxwell field equations for sources that represent disk-like
configurations of matter in confomastatic spacetimes by assuming a functional
dependence among the metric function, the electric potential and an auxiliary
function,which is taken as a solution of the Laplace equation. We then employ
the Lord Kelvin Inversion Method applied to models of finite extension in order
to obtain annular disks. The structures obtained extend to infinity, but their
total masses are finite and all the energy conditions are satisfied. Finally,
we observe that the extremal Reissner-Nordstr\"{o}m black hole can be embedded
into the center of the disks by adding a boundary term in the inversion.Comment: 17 revtex pages, 8 eps figure
The X-ray Cluster Dipole
We estimate the dipole of the whole sky X-ray flux-limited sample of
Abell/ACO clusters (XBACs) and compare it to the optical Abell/ACO cluster
dipole. The X-ray cluster dipole is well aligned () with the
CMB dipole, while it follows closely the radial profile of its optical cluster
counterpart although its amplitude is per cent lower. In view of
the fact that the the XBACs sample is not affected by the volume incompleteness
and the projection effects that are known to exist at some level in the optical
parent Abell/ACO cluster catalogue, our present results confirm the previous
optical cluster dipole analysis that there are significant contributions to the
Local Group motion from large distances (Mpc). In order to
assess the expected contribution to the X-ray cluster dipole from a purely
X-ray selected sample we compare the dipoles of the XBACs and the Brightest
Cluster Sample (Ebeling et al. 1997a) in their overlap region. The resulting
dipoles are in mutual good aggreement with an indication that the XBACs sample
slightly underestimates the full X-ray dipole (by per cent) while the
Virgo cluster contributes about 10 - 15 per cent to the overall X-ray cluster
dipole. Using linear perturbation theory to relate the X-ray cluster dipole to
the Local group peculiar velocity we estimate the density parameter to be
.Comment: 16 pages, latex, + 4 ps figures, submitted to Ap
Определение оптимальных параметров источника рентгеновского излучения на базе малогабаритного ускорителя электронов
Проведено моделирование спектров рентгеновского излучения, генерируемого электронами с энергией 4…10 МэВ в мишенях из различных материалов и разной толщины. Определены оптимальные параметры мишени-конвертора для использования ее в медицинских источниках монохроматического рентгеновского излучения на базе малогабаритных электронных ускорителей. Проведены оценки интенсивности излучения и сравнение источников на базе разных ускорителей
Dynamical thermalization and vortex formation in stirred 2D Bose-Einstein condensates
We present a quantum mechanical treatment of the mechanical stirring of
Bose-Einstein condensates using classical field techniques. In our approach the
condensate and excited modes are described using a Hamiltonian classical field
method in which the atom number and (rotating frame) energy are strictly
conserved. We simulate a T = 0 quasi-2D condensate perturbed by a rotating
anisotropic trapping potential. Vacuum fluctuations in the initial state
provide an irreducible mechanism for breaking the initial symmetries of the
condensate and seeding the subsequent dynamical instability. Highly turbulent
motion develops and we quantify the emergence of a rotating thermal component
that provides the dissipation necessary for the nucleation and motional-damping
of vortices in the condensate. Vortex lattice formation is not observed, rather
the vortices assemble into a spatially disordered vortex liquid state. We
discuss methods we have developed to identify the condensate in the presence of
an irregular distribution of vortices, determine the thermodynamic parameters
of the thermal component, and extract damping rates from the classical field
trajectories.Comment: 22 pages, 15 figures. v2: Minor refinements made at suggestion of
referee. Discussion of other treatments revised. To appear in Phys. Rev.
Entropy of Quantum Fields for Nonextreme Black Holes in the Extreme Limit
Nonextreme black hole in a cavity within the framework of the canonical or
grand canonical ensemble can approach the extreme limit with a finite
temperature measured on a boundary located at a finite proper distance from the
horizon. In spite of this finite temperature, it is shown that the one-loop
contribution of quantum fields to the thermodynamic entropy due
to equilibrium Hawking radiation vanishes in the limit under consideration. The
same is true for the finite temperature version of the Bertotti-Robinson
spacetime into which a classical Reissner-Nordstr\"{o}m black hole turns in the
extreme limit. The result is attributed to the nature of a horizon
for the Bertotti-Robinson spacetime.Comment: 11 pages, ReVTeX, no figures. New references added, discussion
expanded, presentation and English improved. Accepted for publication in
Phys. Rev.
- …
