21,189 research outputs found

    The Dipole Anisotropy of the First All-Sky X-ray Cluster Sample

    Full text link
    We combine the recently published CIZA galaxy cluster catalogue with the XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters in order to examine the origins of the Local Group's peculiar velocity without the use of reconstruction methods to fill the traditional Zone of Avoidance. The advantages of this approach are (i) X-ray emitting clusters tend to trace the deepest potential wells and therefore have the greatest effect on the dynamics of the Local Group and (ii) our all-sky sample provides data for nearly a quarter of the sky that is largely incomplete in optical cluster catalogues. We find that the direction of the Local Group's peculiar velocity is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc away, but that the amplitude of its dipole motion is largely set between 140 and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that without Virgo included, roughly ~70% of our dipole signal comes from mass concentrations at large distances (>60 h^-1 Mpc) and does not flatten, indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc. We also present a detailed discussion of our dipole profile, linking observed features to the structures and superclusters that produce them. We find that most of the dipole signal can be attributed to the Shapley supercluster centered at about 150 h^-1 Mpc and a handful of very massive individual clusters, some of which are newly discovered and lie well in the Zone of Avoidance.Comment: 15 Pages, 9 Figures. Accepted by Ap

    The Power Spectrum of the PSC Redshift Survey

    Get PDF
    We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500 galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors due to the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if \sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures. Accepted by MNRA

    Geometry and topology of two kinds of extreme Reissner-Nordstro¨\ddot{o}m-anti-de Sitter black holes

    Full text link
    Different geometrical and topological properties have been shown for two kinds of extreme Reissner-Nordstro¨\ddot{o}m-anti-de Sitter black holes. The relationship between the geometrical properties and the intrinsic thermodynamical properties has been made explicit.Comment: Latex, 12 pages, 4 figure

    Geometry of the extreme Kerr black holes

    Full text link
    Geometrical properties of the extreme Kerr black holes in the topological sectors of nonextreme and extreme configurations are studied. We find that the Euler characteristic plays an essential role to distinguish these two kinds of extreme black holes. The relationship between the geometrical properties and the intrinsic thermodynamics are investigated.Comment: Latex version, 10 page

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    Charged Annular Disks and Reissner-Nordstr\"{o}m Type Black Holes from Extremal Dust

    Full text link
    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disk-like configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential and an auxiliary function,which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin Inversion Method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstr\"{o}m black hole can be embedded into the center of the disks by adding a boundary term in the inversion.Comment: 17 revtex pages, 8 eps figure

    The X-ray Cluster Dipole

    Get PDF
    We estimate the dipole of the whole sky X-ray flux-limited sample of Abell/ACO clusters (XBACs) and compare it to the optical Abell/ACO cluster dipole. The X-ray cluster dipole is well aligned (25\le 25^{\circ}) with the CMB dipole, while it follows closely the radial profile of its optical cluster counterpart although its amplitude is 1030\sim 10 - 30 per cent lower. In view of the fact that the the XBACs sample is not affected by the volume incompleteness and the projection effects that are known to exist at some level in the optical parent Abell/ACO cluster catalogue, our present results confirm the previous optical cluster dipole analysis that there are significant contributions to the Local Group motion from large distances (160h1\sim 160h^{-1} Mpc). In order to assess the expected contribution to the X-ray cluster dipole from a purely X-ray selected sample we compare the dipoles of the XBACs and the Brightest Cluster Sample (Ebeling et al. 1997a) in their overlap region. The resulting dipoles are in mutual good aggreement with an indication that the XBACs sample slightly underestimates the full X-ray dipole (by 5\le 5 per cent) while the Virgo cluster contributes about 10 - 15 per cent to the overall X-ray cluster dipole. Using linear perturbation theory to relate the X-ray cluster dipole to the Local group peculiar velocity we estimate the density parameter to be βcx0.24±0.05\beta_{c_{x}} \simeq 0.24 \pm 0.05.Comment: 16 pages, latex, + 4 ps figures, submitted to Ap

    Определение оптимальных параметров источника рентгеновского излучения на базе малогабаритного ускорителя электронов

    Get PDF
    Проведено моделирование спектров рентгеновского излучения, генерируемого электронами с энергией 4…10 МэВ в мишенях из различных материалов и разной толщины. Определены оптимальные параметры мишени-конвертора для использования ее в медицинских источниках монохроматического рентгеновского излучения на базе малогабаритных электронных ускорителей. Проведены оценки интенсивности излучения и сравнение источников на базе разных ускорителей

    Dynamical thermalization and vortex formation in stirred 2D Bose-Einstein condensates

    Full text link
    We present a quantum mechanical treatment of the mechanical stirring of Bose-Einstein condensates using classical field techniques. In our approach the condensate and excited modes are described using a Hamiltonian classical field method in which the atom number and (rotating frame) energy are strictly conserved. We simulate a T = 0 quasi-2D condensate perturbed by a rotating anisotropic trapping potential. Vacuum fluctuations in the initial state provide an irreducible mechanism for breaking the initial symmetries of the condensate and seeding the subsequent dynamical instability. Highly turbulent motion develops and we quantify the emergence of a rotating thermal component that provides the dissipation necessary for the nucleation and motional-damping of vortices in the condensate. Vortex lattice formation is not observed, rather the vortices assemble into a spatially disordered vortex liquid state. We discuss methods we have developed to identify the condensate in the presence of an irregular distribution of vortices, determine the thermodynamic parameters of the thermal component, and extract damping rates from the classical field trajectories.Comment: 22 pages, 15 figures. v2: Minor refinements made at suggestion of referee. Discussion of other treatments revised. To appear in Phys. Rev.

    Entropy of Quantum Fields for Nonextreme Black Holes in the Extreme Limit

    Get PDF
    Nonextreme black hole in a cavity within the framework of the canonical or grand canonical ensemble can approach the extreme limit with a finite temperature measured on a boundary located at a finite proper distance from the horizon. In spite of this finite temperature, it is shown that the one-loop contribution Sq S_{q\text{ }}of quantum fields to the thermodynamic entropy due to equilibrium Hawking radiation vanishes in the limit under consideration. The same is true for the finite temperature version of the Bertotti-Robinson spacetime into which a classical Reissner-Nordstr\"{o}m black hole turns in the extreme limit. The result Sq=0S_{q}=0 is attributed to the nature of a horizon for the Bertotti-Robinson spacetime.Comment: 11 pages, ReVTeX, no figures. New references added, discussion expanded, presentation and English improved. Accepted for publication in Phys. Rev.
    corecore