224 research outputs found

    Photoluminescence rings in Corbino disk at quantizing magnetic fields

    Full text link
    Spatially resolved photoluminescence of modulation doped AlGaAs/GaAs heterojunction was investigated in a sample of Corbino disk geometry subject to strong perpendicular magnetic fields. Significant spatial modulation of the photoluminescence was observed in form of one or more concentric rings which travelled across the sample when the magnetic field strength was varied. A topology of the observed structure excludes the possibility of being a trace of an external current. The effect is attributed to formation of compressible and incompressible stripes in a 2DEG density gradient across the sample.Comment: 5 two-column pages, 4 figures (one of them in color

    Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs MQW

    Get PDF
    The circular photogalvanic effect (CPGE) has been observed in (100)-oriented pp-GaAs/AlGaAs quantum wells at normal incidence of far-infrared radiation. It is shown that monopolar optical spin orientation of free carriers causes an electric current which reverses its direction upon changing from left to right circularly polarized radiation. CPGE at normal incidence and the occurence of the linear photogalvanic effect indicate a reduced point symmetry of studied multi-layered heterostructures. As proposed, CPGE can be utilized to investigate separately spin polarization of electrons and holes and the symmetry of quantum wells.Comment: 4 pages, 3 figure

    Near-field induced FIR Josephson-detection by x-axis-oriented YBa_{2}Cu_{3}O_{7-d} -films

    Get PDF
    A novel approach to intrinsic Josephson-detection of far infrared radiation is reported utilizing near-zone field effects at electric contacts on c-axis oriented YBa2Cu3O7- films. While only a bolometric signal was observed focusing the radiation far off the contacts on c-axis normal films, irradiating the edge of contacts yielded an almost wavelength independent fast signal showing the characteristic intensity dependence of Josephson-detection. The signal is attributed to a c-axis parallel component of the electric radiation field being generated in the near-zone field of diffraction at the metallic contact structures

    Can an electric current orient spins in quantum wells?

    Get PDF
    A longstanding theoretical prediction is the orientation of spins by an electrical current flowing through low-dimensional carrier systems of sufficiently low crystallographic symmetry. Here we show by means of terahertz transmission experiments through two-dimensional hole systems a growing spin orientation with an increasing current at room temperature.Comment: 5 pages, 2 figure

    Pattern Formation in Semiconductors

    Get PDF
    In semiconductors, nonlinear generation and recombination processes of free carriers and nonlinear charge transport can give rise to non-equilibrium phase transitions. At low temperatures, the basic nonlinearity is due to the autocatalytic generation of free carriers by impact ionization of shallow impurities. The electric field accelerates free electrons, causing an abrupt increase in free carrier density at a critical electric field. In static electric fields, this nonlinearity is known to yield complex filamentary current patterns bound to electric contacts

    Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption

    Get PDF
    We present spin relaxation times of 2D holes obtained by means of spin sensitive bleaching of the absorption of infrared radiation in p-type GaAs/AlGaAs quantum wells (QWs). It is shown that the saturation of inter-subband absorption of circularly polarized radiation is mainly controlled by the spin relaxation time of the holes. The saturation behavior has been determined for different QW widths and in a wide temperature range with the result that the saturation intensity substantially decreases with narrowing of the QWs. Spin relaxation times are derived from the measured saturation intensities by making use of calculated (linear) absorption coefficients for direct inter-subband transitions. It is shown that spin relaxation is due to the D'yakonov-Perel' mechanism governed by hole-hole scattering. The problem of selection rules is addressed.Comment: 14 pages, 5 figure
    corecore