65,054 research outputs found

    Near-field thermal upconversion and energy transfer through a Kerr medium : Theory

    Full text link
    We present an approach for achieving large Kerr χ(3)\chi^{(3)}--mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ(3)\chi^{(3)} medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of interveening mediums---either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials---designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities W/μm2\sim\mathrm{W}/\mu\mathrm{m}^2, the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses

    the fountain of youth

    Get PDF

    Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points

    Full text link
    We derive analytical formulas quantifying radiative emission from subwavelength emitters embedded in triply resonant nonlinear χ(2)\chi^{(2)} cavities supporting exceptional points (EP) made of dark and leaky modes. We show that the up-converted radiation rate in such a system can be greatly enhanced---by up to two orders of magnitude---compared to typical Purcell factors achievable in non-degenerate cavities, for both monochromatic and broadband emitters. We provide a proof-of-concept demonstration by studying an inverse-designed 2D photonic-crystal slab that supports an EP formed out of a Dirac cone at the emission frequency and a phase-matched, leaky-mode resonance at the second harmonic frequency

    Thermal bistability through coupled photonic resonances

    Full text link
    We present a scheme for achieving thermal bistability based on the selective coupling of three optical resonances. This approach requires one of the resonant frequencies to be temperature dependent, which can occur in materials exhibiting strong thermo-optic effects. For illustration, we explore thermal bistability in two different passive systems, involving either a periodic array of Si ring resonators or parallel GaAs thin films separated by vacuum and exchanging heat in the near field. Such a scheme could prove useful for thermal memory devices operating with transition times \lesssim hundreds of milliseconds
    corecore