3,303 research outputs found
Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons
We consider the decoherence of photons suffering in phase-damping channels.
By exploring the evolutions of single-photon polarization states and two-photon
polarization-entangled states, we find that different frequency spectrum
envelopes of photons induce different decoherence processes. A white frequency
spectrum can lead the decoherence to an ideal Markovian process. Some color
frequency spectrums can induce asymptotical decoherence, while, some other
color frequency spectrums can make coherence vanish periodically with variable
revival amplitudes. These behaviors result from the non-Markovian effects on
the decoherence process, which may give rise to a revival of coherence after
complete decoherence.Comment: 7 pages, 4 figures, new results added, replaced by accepted versio
A Fair and Secure Cluster Formation Process for Ad Hoc Networks
An efficient approach for organizing large ad hoc networks is to divide the nodes
into multiple clusters and designate, for each cluster, a clusterhead which is responsible for
holding intercluster control information. The role of a clusterhead entails rights and duties.
On the one hand, it has a dominant position in front of the others because it manages the
connectivity and has access to other node¿s sensitive information. But on the other hand, the
clusterhead role also has some associated costs. Hence, in order to prevent malicious nodes
from taking control of the group in a fraudulent way and avoid selfish attacks from suitable
nodes, the clusterhead needs to be elected in a secure way. In this paper we present a novel
solution that guarantees the clusterhead is elected in a cheat-proof manner
Cavity QED treatment of scattering-induced efficient free-space excitation and collection in high-Q whispering-gallery microcavities
Whispering-gallery microcavity laser possesses ultralow threshold, whereas
convenient free-space optical excitation and collection suffer from low
efficiencies due to its rotational symmetry. Here we analytically study a
three-dimensional microsphere coupled to a nano-sized scatterer in the
framework of quantum optics. It is found that the scatterer is capable of
coupling light in and out of the whispering-gallery modes (WGMs) without
seriously degrading their high-Q properties, while the microsphere itself plays
the role of a lens to focus the input beam on the scatterer and vice versa. Our
analytical results show that (1) the high-Q WGMs can be excited in free space,
and (2) over 50% of the microcavity laser emission can be collected within less
than . This coupling system holds great potential for low
threshold microlasers free of external couplers.Comment: 10 pages, 8 figure
Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator
We propose a hybrid photonic-plasmonic resonant structure which consists of a
metal nanoparticle (MNP) and a whispering gallery mode (WGM) microcavity. It is
found that the hybrid mode enables a strong interaction between the light and
matter, and the single-atom cooperativity is enhanced by more than two orders
of magnitude compared to that in a bare WGM microcavity. This remarkable
improvement originates from two aspects: (1) the MNP offers a highly enhanced
local field in the vicinity of an emitter, and (2), surprisingly, the
high-\textit{Q} property of WGMs can be maintained in the presence of the MNP.
Thus the present system has great advantages over a single microcavity or a
single MNP, and holds great potential in quantum optics, nonlinear optics and
highly sensitive biosening.Comment: 5 pages, 4 figure
Structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering
We report on the structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering, using transmission electron microscopy (TEM), high-resolution x-ray diffraction, and Rutherford backscattering spectroscopy (RBS) measurements. The ferromagnetic Mn-doped ZnO film showed magnetization hysteresis at 5 and 300 K. A TEM analysis revealed that the Mn-doped ZnO included a high density of round-shaped cubic and elongated hexagonal MnZn oxide precipitates. The incorporation of Mn caused a large amount of structural disorder in the crystalline columnar ZnO lattice, although the wurtzite crystal structure was maintained. The observed ferromagnetism is discussed based on the structural characteristics indicated by TEM and the behavior of Mn when it is substituted into a ZnO lattice derived from RBS measurements
A Catalog of Luminous Infrared Galaxies in the IRAS Survey and the Second Data Release of the SDSS
We select the Luminous Infrared Galaxies by cross-correlating the Faint
Source Catalogue (FSC) and Point Source Catalogue (PSC) of the IRAS Survey with
the Second Data Release of the SDSS for studying their infrared and optical
properties. The total number of our sample is 1267 for FSC and 427 for PSC by
using 2 significance level cross-section. The "likelihood ratio" method
is used to estimate the sample's reliability and for a more reliable subsample
(908 for FSC and 356 for PSC) selection. Then a Catalog with both the infrared,
optical and radio informations is presented and will be used in further works.
Some statistical results show that the Luminous Infrared Galaxies are quite
different from the Ultra-Luminous Infrared Galaxies. The AGN fractions of
galaxies with different infrared luminosities and the radio to infrared
correlations are consist with previous studies.Comment: 15 pages, 11 figures. Accepted by ChJAA. Reference adde
Orthogonal methods based ant colony search for solving continuous optimization problems
Research into ant colony algorithms for solving continuous optimization problems forms one of the most
significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial
optimization, they have shown great potential in solving a wide range of optimization problems, including continuous
optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed "continuous orthogonal ant colony" (COAC), whose pheromone deposit mechanisms would enable ants to search for
solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore
their chosen regions rapidly and e±ciently. By implementing an "adaptive regional radius" method, the proposed
algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is
compared with two other ant algorithms for continuous optimization of API and CACO by testing seventeen functions
in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others
Exploration of ecological factors related to the spatial heterogeneity of tuberculosis prevalence in P. R. China
Background: The current prevalence of tuberculosis (TB) in the People's Republic of China (P. R. China) demonstrates geographical heterogeneities, which show that the TB prevalence in the remote areas of Western China is more serious than that in the coastal plain of Eastern China. Although a lot of ecological studies have been applied in the exploration on the regional difference of disease risks, there is still a paucity of ecological studies on TB prevalence in P. R. China. Objective: To understand the underlying factors contributing to the regional inequity of TB burden in P. R. China by using an ecological approach and, thus, aiming to provide a basis to eliminate the TB spatial heterogeneity in the near future. Design: Latent ecological variables were identified by using exploratory factor analysis from data obtained from four sources, i.e. the databases of the National TB Control Programme (2001–2010) in P. R. China, the China Health Statistical Yearbook during 2002–2011, the China Statistical Yearbook during 2002–2011, and the provincial government websites in 2013. Partial least squares path modelling was chosen to construct the structural equation model to evaluate the relationship between TB prevalence and ecological variables. Furthermore, a geographically weighted regression model was used to explore the local spatial heterogeneity in the relationships. Results: The latent ecological variables in terms of ‘TB prevalence’, ‘TB investment’, ‘TB service’, ‘health investment’, ‘health level’, ‘economic level’, ‘air quality’, ‘climatic factor’ and ‘geographic factor’ were identified. With the exception of TB service and health levels, other ecological factors had explicit and significant impacts on TB prevalence to varying degrees. Additionally, each ecological factor had different impacts on TB prevalence in different regions significantly. Conclusion: Ecological factors that were found predictive of TB prevalence in P. R. China are essential to take into account in the formulation of locally comprehensive strategies and interventions aiming to tailor the TB control and prevention programme into local settings in each ecozone
Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration
In this paper, we report the results of constraining the holographic dark
energy model with spatial curvature and massive neutrinos, based on a Markov
Chain Monte Carlo global fit technique. The cosmic observational data include
the full WMAP 7-yr temperature and polarization data, the type Ia supernova
data from Union2.1 sample, the baryon acoustic oscillation data from SDSS DR7
and WiggleZ Dark Energy Survey, and the latest measurements of from HST.
To deal with the perturbations of dark energy, we adopt the parameterized
post-Friedmann method. We find that, for the simplest holographic dark energy
model without spatial curvature and massive neutrinos, the phenomenological
parameter at more than confidence level. The inclusion of
spatial curvature enlarges the error bars and leads to only in about
range; in contrast, the inclusion of massive neutrinos does not
have significant influence on . We also find that, for the holographic dark
energy model with spatial curvature but without massive neutrinos, the
error bars of the current fractional curvature density
are still in order of ; for the model with massive neutrinos but
without spatial curvature, the upper bound of the total mass of
neutrinos is eV. Moreover, there exists clear degeneracy
between spatial curvature and massive neutrinos in the holographic dark energy
model, which enlarges the upper bound of by more than 2 times.
In addition, we demonstrate that, making use of the full WMAP data can give
better constraints on the holographic dark energy model, compared with the case
using the WMAP ``distance priors''.Comment: 21 pages, 10 figures; major revision; new figures and discussions
added; accepted by JCA
- …
