118,760 research outputs found
Formation of Ti–Zr–Cu–Ni bulk metallic glasses
Formation of bulk metallic glass in quaternary Ti–Zr–Cu–Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti34Zr11Cu47Ni8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti34Zr11Cu47Ni8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Meson and Baryon dispersion relations with Brillouin fermions
We study the dispersion relations of mesons and baryons built from Brillouin
quarks on one N_f=2 gauge ensemble provided by QCDSF. For quark masses up to
the physical strange quark mass, there is hardly any improvement over the
Wilson discretization, if either action is link-smeared and tree-level clover
improved. For quark masses in the range of the physical charm quark mass, the
Brillouin action still shows a perfect relativistic behavior, while the Wilson
action induces severe cut-off effects. As an application we determine the
masses of the \Omega_c^0, \Omega_{cc}^+ and \Omega_{ccc}^{++} baryons on that
ensemble.Comment: 16 pages, 9 figures, 4 tables; v2: one Reference added, matches
published versio
Possible Exotic State
We study the possible exotic states with using the
tetraquark interpolating currents with the QCD sum rule approach. The extracted
masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the
bottomomium-like states. There is no working region for the light tetraquark
currents, which implies the light state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe
There is increasing evidence that conventional cold dark matter (CDM) models
lead to conflicts between observations and numerical simulations of dark matter
halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is
strongly self-interacting, then the conflicts disappear. However, the
assumption of strong self-interaction would rule out the favored candidates for
CDM, namely weakly interacting massive particles (WIMPs), such as the
neutralino. In this paper we propose a mechanism of non-thermal production of
WIMPs and study its implications on the power spectrum. We find that the
non-vanishing velocity of the WIMPs suppresses the power spectrum on small
scales compared to what it obtained in the conventional CDM model. Our results
show that, in this context, WIMPs as candidates for dark matter can work well
both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
- …
