6,736 research outputs found

    Expert Finding by Capturing Organisational Knowledge from Legacy Documents

    No full text
    Organisations capitalise on their best knowledge through the improvement of shared expertise which leads to a higher level of productivity and competency. The recognition of the need to foster the sharing of expertise has led to the development of expert finder systems that hold pointers to experts who posses specific knowledge in organisations. This paper discusses an approach to locating an expert through the application of information retrieval and analysis processes to an organization’s existing information resources, with specific reference to the engineering design domain. The approach taken was realised through an expert finder system framework. It enables the relationships of heterogeneous information sources with experts to be factored in modelling individuals’ expertise. These valuable relationships are typically ignored by existing expert finder systems, which only focus on how documents relate to their content. The developed framework also provides an architecture that can be easily adapted to different organisational environments. In addition, it also allows users to access the expertise recognition logic, giving them greater trust in the systems implemented using this framework. The framework were applied to real world application and evaluated within a major engineering company

    Type Ia Supernovae and Accretion Induced Collapse

    Full text link
    Using the population synthesis binary evolution code StarTrack, we present theoretical rates and delay times of Type Ia supernovae arising from various formation channels. These channels include binaries in which the exploding white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a white dwarf accretes from a helium-rich companion and explodes as a SN Ia before reaching the Chandrasekhar mass limit. We find that using a common envelope parameterization employing energy balance with alpha=1 and lambda=1, the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a burst of star formation at t=0. Additionally, the delay time distribution of the sub-Chandrasekhar model can be divided in to two distinct evolutionary channels: the `prompt' helium-star channel with delay times < 500 Myr, and the `delayed' double white dwarf channel with delay times > 800 Myr spanning up to a Hubble time. These findings are in agreement with recent observationally-derived delay time distributions which predict that a large number of SNe Ia have delay times < 1 Gyr, with a significant fraction having delay times < 500 Myr. We find that the DDS channel is also able to account for the observed rates of SNe Ia. However, detailed simulations of white dwarf mergers have shown that most of these mergers will not lead to SNe Ia but rather to the formation of a neutron star via accretion-induced collapse. If this is true, our standard population synthesis model predicts that the only progenitor channel which can account for the rates of SNe Ia is the sub-Chandrasekhar mass scenario, and none of the other progenitors considered can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star Evolution: Mass Loss, Accretion and Mergers

    Postfledging Survival, Movements, and Dispersal of Ring Ouzels (Turdus torquatus)

    Get PDF
    We thank Invercauld Estate for cooperation with access to Glen Clunie. S. Redpath, J. Wilson, and S. Roos provided valuable comments on the manuscript. This study was funded by the Royal Society for the Protection of Birds, Scottish Natural Heritage, and the Cairngorms National Park Authority. J.L.L. was supported by the Natural Environment Research Council.Peer reviewedPublisher PD

    Spectral modeling of type II supernovae. I. Dilution factors

    Full text link
    We present substantial extensions to the Monte Carlo radiative transfer code TARDIS to perform spectral synthesis for type II supernovae. By incorporating a non-LTE ionization and excitation treatment for hydrogen, a full account of free-free and bound-free processes, a self-consistent determination of the thermal state and by improving the handling of relativistic effects, the improved code version includes the necessary physics to perform spectral synthesis for type II supernovae to high precision as required for the reliable inference of supernova properties. We demonstrate the capabilities of the extended version of TARDIS by calculating synthetic spectra for the prototypical type II supernova SN1999em and by deriving a new and independent set of dilution factors for the expanding photosphere method. We have investigated in detail the dependence of the dilution factors on photospheric properties and, for the first time, on changes in metallicity. We also compare our results with two previously published sets of dilution factors by Eastman et al. (1996) and by Dessart & Hillier (2005), and discuss the potential sources of the discrepancies between studies.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in A&

    Spectral sequences of Type Ia supernovae. I. Connecting normal and sub-luminous SN Ia and the presence of unburned carbon

    Get PDF
    Type Ia supernovae are generally agreed to arise from thermonuclear explosions of carbon-oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, type Ia supernovae have multiple subclasses, distinguished by their lightcurves and spectra. This raises the question whether these reflect that multiple mechanisms occur in nature, or instead that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like supernovae can be understood as part of a spectral sequence, in which changes in temperature dominate. Specifically, we find that a single ejecta structure is sufficient to provide reasonable fits of both the normal type Ia supernova SN~2011fe and the 91bg-like SN~2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support of a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in pre-maximum SN~Ia spectra -- we find that emission from iron can "fill in" the carbon trough in cool SN~Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal poor compared to events where carbon is not detected

    Moments of spectral functions: Monte Carlo evaluation and verification

    Full text link
    The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely-differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval (β/2,β/2)(-\beta \hbar / 2, \beta \hbar/2). The algorithmic detail that leads to robust numerical approximations is the fact that the path integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is non-linear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.Comment: 13 pages, 2 figure

    Type Ia Supernovae and Accretion Induced Collapse

    Full text link
    Using the population synthesis binary evolution code StarTrack, we present theoretical rates and delay times of Type Ia supernovae arising from various formation channels. These channels include binaries in which the exploding white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a white dwarf accretes from a helium-rich companion and explodes as a SN Ia before reaching the Chandrasekhar mass limit. We find that using a common envelope parameterization employing energy balance with alpha=1 and lambda=1, the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a burst of star formation at t=0. Additionally, the delay time distribution of the sub-Chandrasekhar model can be divided in to two distinct evolutionary channels: the `prompt' helium-star channel with delay times < 500 Myr, and the `delayed' double white dwarf channel with delay times > 800 Myr spanning up to a Hubble time. These findings are in agreement with recent observationally-derived delay time distributions which predict that a large number of SNe Ia have delay times < 1 Gyr, with a significant fraction having delay times < 500 Myr. We find that the DDS channel is also able to account for the observed rates of SNe Ia. However, detailed simulations of white dwarf mergers have shown that most of these mergers will not lead to SNe Ia but rather to the formation of a neutron star via accretion-induced collapse. If this is true, our standard population synthesis model predicts that the only progenitor channel which can account for the rates of SNe Ia is the sub-Chandrasekhar mass scenario, and none of the other progenitors considered can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star Evolution: Mass Loss, Accretion and Mergers

    Modelling the early time behaviour of type Ia supernovae: effects of the 56Ni distribution

    Get PDF
    Recent studies have demonstrated the diversity in type Ia supernovae (SNe Ia) at early times and highlighted a need for a better understanding of the explosion physics as manifested by observations soon after explosion. To this end, we present a Monte Carlo code designed to model the light curves of radioactively driven, hydrogen-free transients from explosion to approximately maximum light. In this initial study, we have used a parametrised description of the ejecta in SNe Ia, and performed a parameter study of the effects of the 56^{56}Ni distribution on the observed colours and light curves for a fixed 56^{56}Ni mass of 0.6 MM_\odot. For a given density profile, we find that models with 56^{56}Ni extending throughout the entirety of the ejecta are typically brighter and bluer shortly after explosion. Additionally, the shape of the density profile itself also plays an important role in determining the shape, rise time, and colours of observed light curves. We find that the multi-band light curves of at least one SNe Ia (SN 2009ig) are inconsistent with less extended 56^{56}Ni distributions, but show good agreement with models that incorporate 56^{56}Ni throughout the entire ejecta. We further demonstrate that comparisons with full UVOIRUVOIR colour light curves are powerful tools in discriminating various 56^{56}Ni distributions, and hence explosion models.Comment: 14 pages, 8 figures, 2 tables. Minor changes in notation to match published version in Astronomy & Astrophysic

    Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    Full text link
    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA
    corecore