845 research outputs found
Fermionic partner of Quintessence field as candidate for dark matter
Quintessence is a possible candidate for dark energy. In this paper we study
the phenomenologies of the fermionic partner of Quintessence, the Quintessino.
Our results show that, for suitable choices of the model parameters, the
Quintessino is a good candidate for cold or warm dark matter. In our scenario,
dark energy and dark matter of the Universe are connected in one chiral
superfield.Comment: 4 pages, 3 figures, version to appear in PR
Back Reaction And Local Cosmological Expansion Rate
We calculate the back reaction of cosmological perturbations on a general
relativistic variable which measures the local expansion rate of the Universe.
Specifically, we consider a cosmological model in which matter is described by
a single field. We analyze back reaction both in a matter dominated Universe
and in a phase of scalar field-driven chaotic inflation. In both cases, we find
that the leading infrared terms contributing to the back reaction vanish when
the local expansion rate is measured at a fixed value of the matter field which
is used as a clock, whereas they do not appear to vanish if the expansion rate
is evaluated at a fixed value of the background time. We discuss possible
implications for more realistic models with a more complicated matter sector.Comment: 7 pages, No figure
Organic film thickness influence on the bias stress instability in Sexithiophene Field Effect Transistors
In this paper, the dynamics of bias stress phenomenon in Sexithiophene (T6)
Field Effect Transistors (FETs) has been investigated. T6 FETs have been
fabricated by vacuum depositing films with thickness from 10 nm to 130 nm on
Si/SiO2 substrates. After the T6 film structural analysis by X-Ray diffraction
and the FET electrical investigation focused on carrier mobility evaluation,
bias stress instability parameters have been estimated and discussed in the
context of existing models. By increasing the film thickness, a clear
correlation between the stress parameters and the structural properties of the
organic layer has been highlighted. Conversely, the mobility values result
almost thickness independent
Gamma rays from dark matter annihilation in the Draco and observability at ARGO
The CACTUS experiment recently observed a gamma ray excess above 50 GeV from
the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is
dark matter dominated the gamma rays may be generated through dark matter
annihilation in the Draco halo. In the framework of the minimal supersymmetric
extension of the standard model we explore the parameter space to account for
the gamma ray signals at CACTUS. We find that the neutralino mass is
constrained to be approximately in the range between 100 GeV ~ 400 GeV and a
sharp central cuspy of the dark halo profile in Draco is necessary to explain
the CACTUS results. We then discuss further constraints on the supersymmetric
parameter space by observations at the ground based ARGO detector. It is found
that the parameter space can be strongly constrained by ARGO if no excess from
Draco is observed above 100 GeV.Comment: 15 pages, 4 figure
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
Higgsino Dark Matter in a SUGRA Model with Nonuniversal Gaugino Masses
We study a specific SUGRA model with nonuniversal gaugino masses as an
alternative to the minimal SUGRA model in the context of supersymmetric dark
matter. The lightest supersymmetric particle in this model comes out to be a
Higgsino dominated instead of a bino dominated lightest neutralino. The thermal
relic density of this Higgsino dark matter is somewhat lower than the
cosmologically favoured range, which means it may be only a subdominant
component of the cold dark matter. Nonetheless, it predicts favourable rates of
indirect detection, which can be seen in square-km size neutrino telescopes.Comment: Version to appear in Phys. Rev. D. A few references added in the
bibliography and a comment added in Section 2. LaTex, 16 pages, 4 figure
Baryogenesis and Gravitino Dark Matter in Gauge-Mediated Supersymmetry-Breaking Models
We discuss two cosmological issues in a generic gauge-mediated supersymmetry
(SUSY)-breaking model, namely the Universe's baryon asymmetry and the gravitino
dark-matter density. We show that both problems can be simultaneously solved if
there exist extra matter multiplets of a SUSY-invariant mass of the order of
the ``-term'', as suggested in several realistic SUSY grand-unified
theories. We propose an attractive scenario in which the observed baryon
asymmetry is produced in a way totally independent of the reheating temperature
of inflation without causing any cosmological gravitino problem. Furthermore,
in a relatively wide parameter space, we can also explain the present mass
density of cold dark matter by the thermal relics of the gravitinos without an
adjustment of the reheating temperature of inflation. We point out that there
is an interesting relation between the baryon asymmetry and the dark-matter
density.Comment: 20 pages, 2 figure
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Non-thermal dark matter via Affleck-Dine baryogenesis and its detection possibility
The formation and late time decays of Q-balls are generic consequences of the
Affleck-Dine (AD) baryogenesis. A substantial amount of the lightest
supersymmetry (SUSY) particles (LSPs) are produced non-thermally as the decay
products of these Q-balls. This requires a significantly large annihilation
cross section of the LSP so as not to overclose the universe, which predicts a
higgsino- or wino-like LSP instead of the standard bino LSP. We have reexamined
the AD baryogenesis with special attention to the late-time decays of the
Q-balls, and then specified the parameter regions where the LSPs produced by
the Q-ball decays result in a cosmologically interesting mass density of dark
matter by adopting several SUSY breaking models. This reveals new
cosmologically interesting parameter regions, which have not attracted much
attention so far. We have also investigated the prospects of direct and
indirect detection of these dark matter candidates, and found that there is an
intriguing possibility to detect them in various next generation dark matter
searches.Comment: 51 pages, 18 figures, version accepted for publication in Physical
Review
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
- …
