32 research outputs found
L1-Specific Protection from Tumor Challenge Elicited by HPV16 Virus-like Particles
AbstractA single injection of HPV16 L1 virus-like particles induced potent CD8-mediated protection from tumor challenge by C3 cells, a line derived from embryonic mouse cells transfected with the HPV16 genome. L1 RNA, but not protein, was detected biochemically in C3 cells. These results indicate that low-level expression of HPV16 L1 can occur in proliferating cells and serve as a tumor vaccine target. Although L1 expression is generally thought to be restricted to terminally differentiated epithelial cells, these results suggest that additional analysis for low-level L1 expression in proliferating cells of HPV-induced lesions is warranted and might help in predicting the clinical potential of HPV L1 virus-like particle-based vaccines
Direct fluorination of the anthraquinone nucleus: scope and application to the synthesis of novel rhein analogues
Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus
AbstractWe studied the effects of saccadic eye movements on visual signaling in the primate lateral geniculate nucleus (LGN), the earliest stage of central visual processing. Visual responses were probed with spatially uniform flickering stimuli, so that retinal processing was uninfluenced by eye movements. Nonetheless, saccades had diverse effects, altering not only response strength but also the temporal and chromatic properties of the receptive field. Of these changes, the most prominent was a biphasic modulation of response strength, weak suppression followed by strong enhancement. Saccadic modulation was widespread, and affected both of the major processing streams in the LGN. Our results demonstrate that during natural viewing, thalamic response properties can vary dramatically, even over the course of a single fixation
Effect of Preexisting Neutralizing Antibodies on the Anti-tumor Immune Response Induced by Chimeric Human Papillomavirus Virus-like Particle Vaccines
AbstractChimeric human papillomavirus virus-like particles (HPV cVLPs) carrying HPV16 E7 protein are potent vaccines for inducing cell-mediated immunity (CMI) against HPV-induced tumors in animal models. We tested the hypothesis that virion-neutralizing antibodies generated during an initial vaccination might prevent effective boosting of CMI to the cVLPs. Mice with circulating HPV16-neutralizing antibodies, generated by direct immunization with wild-type VLPs or by passive transfer of hyperimmune anti-HPV16 VLP mouse sera, were subsequently vaccinated with HPV16 E7-containing cVLPs. Mice with preexisting neutralizing antibodies were not protected from HPV16 E7-positive TC-1 tumor challenge, compared to the protection seen in mice lacking these antibodies. Antibody-coated VLPs bound very inefficiently to receptor-positive cell lines, suggesting that one of the mechanisms of antibody interference is blocking of VLP binding to its receptor and thereby uptake of VLPs by antigen-presenting cells. Our results suggest that repetitive vaccination with a cVLP for induction of cellular immune responses to an incorporated antigen may be of limited effectiveness due to the presence of neutralizing antibodies against the capsid proteins induced after the first application. This limitation could potentially be overcome by boosting with cVLPs containing the same target antigen incorporated into other papillomavirus-type VLPs
Mucosal Vaccination with a Recombinant Salmonella typhimurium Expressing Human Papillomavirus Type 16 (HPV16) L1 Virus-like Particles (VLPs) or HPV16 VLPs Purified from Insect Cells Inhibits the Growth of HPV16-Expressing Tumor Cells in Mice
AbstractHuman papillomaviruses, mainly type 16 (HPV16), are responsible for cervical intraepithelial neoplasia, which can lead, in association with other factors, to cervical cancer. Both Salmonella recombinant vaccine strains assembling HPV16 virus-like particles (VLPs) and HPV16 VLPs purified from insect cells are able to induce HPV16 neutralizing antibodies in genital secretions of mice after nasal immunization. Anti-HPV16-specific antibodies in cervical secretions of women may prevent genital infection with HPV16, although this cannot be critically evaluated in the absence of an experimental model for genital papillomavirus infection. Induction of HPV16-specific cell-mediated immunity in the genital mucosa could improve the efficacy of a vaccine and a mucosal route of immunization might be necessary to do so. It has been shown that systemic immunization of mice with purified HPV16 VLPs confers protection against an HPV16-expressing tumor cell challenge through the induction of cytotoxic T-lymphocytes. Using the same C3 tumor model, we show that intranasal immunization of mice with purified HPV16 VLPs in a prophylactic setting also induces anti-tumor immunity. More interestingly, mucosal vaccination of mice with a Salmonella recombinant strain stably expressing HPV16 L1 VLPs also induces anti-tumor immunity in prophylactic as well as in therapeutic settings. Our data suggest that attenuated Salmonella strains expressing chimeric VLPs containing nonstructural viral proteins might be a promising candidate vaccine against cervical cancer by inducing both neutralizing antibodies and cell-mediated immunity
