85 research outputs found
Seasonal variations in the diagnosis of childhood cancer in the United States
Seasonal trends in month of diagnosis have been reported for childhood acute lymphoblastic leukaemia (ALL) and non-Hodgkin's lymphoma (NHL). This seasonal variation has been suggested to represent an underlying viral aetiology for these malignancies. Some studies have shown the highest frequency of diagnoses in the summer months, although this has been inconsistent. Data from the Children's Cancer Group and the Pediatric Oncology Group were analysed for seasonal incidence patterns. A total of 20 949 incident cancer cases diagnosed in the USA from 1 January 1989 through 31 December 1991 were available for analyses. Diagnosis-specific malignancies available for evaluation included ALL, acute myeloid leukaemia (AML), Hodgkin's disease, NHL, rhabdomyosarcoma, neuroblastoma, retinoblastoma, osteosarcoma, Wilms' tumour, retinoblastoma, Ewings' sarcoma, central nervous system (CNS) tumours and hepatoblastoma. Overall, there was no statistically significant seasonal variation in the month of diagnosis for all childhood cancers combined. For diagnosis-specific malignancies, there was a statistically significant seasonal variation for ALL (P = 0.01; peak in summer), rhabdomyosarcoma (P = 0.03; spring/summer) and hepatoblastoma (P = 0.01; summer); there was no seasonal variation in the diagnosis of NHL. When cases were restricted to latitudes greater than 40° (‘north’), seasonal patterns were apparent only for ALL and hepatoblastoma. Notably, 33% of hepatoblastoma cases were diagnosed in the summer months. In contrast, for latitudes less than 40° (‘south’), only CNS tumours demonstrated a seasonal pattern (P = 0.002; winter). Although these data provide modest support for a summer peak in the diagnosis of childhood ALL, any underlying biological mechanisms that account for these seasonal patterns are likely complex and in need of more definitive studies. © 1999 Cancer Research Campaig
The Initiative to Maximize Progress in Adolescent and Young Adult Cancer Therapy (IMPACT) Cohort Study: a population-based cohort of young Canadians with cancer
BACKGROUND: Cancer is the leading cause of disease-related death in adolescents and young adults (AYA). Annual improvements in AYA cancer survival have been inferior to those observed in children and older adults. Prior studies of AYA with cancer have been limited by their focus on patients from select treatment centres, reducing generalizability, or by being population-based but lacking diagnostic and treatment details. There is a critical need to conduct population-based studies that capture detailed patient, disease, treatment and system-level data on all AYA regardless of treatment location. METHODS/DESIGN: We will create a cohort of all AYA (aged 15–21 years) at the time of diagnosis with any malignancy between 1992 and 2011 in Ontario, Canada (n = 5,394). Subjects will be identified through the Ontario Cancer Registry and the final cohort will be expanded to include 2012 diagnoses, as these data become available. Detailed diagnostic, treatment and outcome data for those patients treated at a pediatric cancer centre will be provided by a population-based pediatric cancer registry (n = 1,030). For 15–18 year olds treated at adult centres (n = 923) and all 19–21 year olds (n = 3396), trained abstractors will collect the comparable data elements from medical records. We will link these data to population-based administrative health data that include physician billings, hospitalizations and emergency room visits. This will allow descriptions of health care access and use prior to cancer diagnosis, and during and after treatment. DISCUSSION: The IMPACT cohort will serve as a platform for addressing questions that span the AYA cancer journey. These will include determining which factors influence where AYA receive care, the impact of locus of care on the types and intensity of cancer therapy, appropriateness of surveillance for disease recurrence, access to clinical trials, and receipt of palliative and survivor care. Findings using the IMPACT cohort have the potential to lead to changes in practice and cancer policy, reduce mortality, and improve quality of life for AYA with cancer. The IMPACT data platform will be a permanent resource, accessible to researchers across Canada
Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation
Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.This work was supported by grants from the National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA) Integrated Neuroscience Initiative on Alcoholism (INIA-West, http://www.scripps.edu/california/research/inia/; AA13520), NIH K award to IP (AA017234), and NIH grant AA013518 to RAH (NIH, http://www.nih.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.Pharmac
The Effects of Storage Conditions on the Preservation of Enzymatic Activity in Bone
Alkaline phosphatase and acid phosphatase are two major enzymatic measures of osteoblastic and osteoclastic activity, respectively. As a result, the preservation of the enzymes in bone specimens to near in vivo accuracy is essential. Despite standardization of the staining process, several factors related to the storage of blocks and slides before sectioning and staining impact the level of enzymes detected in the tissue. Block condition (intact, faced, or unstained) as well as environment (temperature and length of time in storage) affect alkaline phosphatase preservation while the acid phosphatase enzyme remains unaffected. We conclude that to optimally preserve alkaline phosphatase enzyme, methacrylate-embedded undecalcified murine bones should be stored as intact blocks. After sectioning, the faced blocks should be stored at 4°C for optimal enzyme staining of future sections. Furthermore, it is best to stain sections immediately after sectioning
- …
