262 research outputs found
Regulating the employment dynamics of domestic supply chains
This paper sheds light on the role that the regulation of primarily domestic, rather than global, supply chains could play in protecting and enhancing standards of workplace health and safety, as well as employment standards more generally. The analysis presented confirms the potential relevance of such regulation in these regards. However, it also reinforces existing evidence pointing to the fact that only very rarely will market-related considerations on their own prompt purchasers to seek to directly influence the employment practices of their suppliers. The paper ends therefore by highlighting a number of key issues relating to the design of regulatory initiatives aimed at protecting and enhancing employment conditions within supply chains
Protecting workers through supply chains: lessons from two construction case studies
Two case studies of the successful use of supply chains to support the effective management of health and safety on constructions sites are analysed to identify the factors supporting this success. The analysis reveals that a combination of external regulatory pressures and an industry structure facilitative of the establishment and implementation of ‘good practice’ played a crucial role in the outcomes achieved. It is concluded therefore that while the findings lend weight to policy initiatives to utilise the power dynamics in supply chains to protect working conditions, they also suggest that surrounding institutional and industrial contexts exert a potentially crucial influence over their effectiveness. Consequently, it is further argued that such initiatives need to be responsively shaped to them
Experimental constraints on the textures and origin of obsidian pyroclasts
Obsidian pyroclasts are commonly preserved in the fall deposits of explosive silicic eruptions. Recent work has suggested that they form by sintering of ash particles on the conduit walls above the fragmentation depth and are subsequently torn out and transported in the gas-particle dispersion. Although the sintering hypothesis is consistent with the general vesicle textures and dissolved volatiles in obsidian pyroclasts, previous sintering experiments do not capture all of the textural complexities observed in the natural pyroclasts. Here, we design experiments in which unimodal and bimodal distributions of rhyolitic ash are sintered at temperatures and H2O pressures relevant to shallow volcanic conduits and under variable cooling rates. The experiments produce dense, welded obsidian that have a range of textures similar to those observed in natural pyroclasts. We find that using a unimodal distribution of particles produces obsidian with evenly distributed trapped vesicles, while a bimodal initial particle distribution produces obsidian with domains of poorly vesicular glass among domains of more vesicle-rich glass. We also find that slow cooling leads to resorption of trapped vesicles, producing fully dense obsidian. These broad features match those found in obsidian pyroclasts from the North Mono (California, USA) rhyolite eruption, providing strong support to the hypothesis that obsidian can be produced by ash sintering above the fragmentation depth during explosive eruptions
A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: findings from a multi-cohort study
Summary: This observational study assessed vertical impacts experienced in older adults as part of their day-to-day physical activity using accelerometry and questionnaire data. Population-based older adults experienced very limited high-impact activity. The accelerometry method utilised appeared to be valid based on comparisons between different cohorts and with self-reported activity.
Introduction: We aimed to validate a novel method for evaluating day-to-day higher impact weight-bearing physical activity (PA) in older adults, thought to be important in protecting against osteoporosis, by comparing results between four cohorts varying in age and activity levels, and with self-reported PA levels.
Methods: Participants were from three population-based cohorts, MRC National Survey of Health and Development (NSHD), Hertfordshire Cohort Study (HCS) and Cohort for Skeletal Health in Bristol and Avon (COSHIBA), and the Master Athlete Cohort (MAC). Y-axis peaks (reflecting the vertical when an individual is upright) from a triaxial accelerometer (sampling frequency 50 Hz, range 0–16 g) worn at the waist for 7 days were classified as low (0.5–1.0 g), medium (1.0–1.5 g) or higher (≥1.5 g) impacts.
Results: There were a median of 90, 41 and 39 higher impacts/week in NSHD (age 69.5), COSHIBA (age 76.8) and HCS (age 78.5) participants, respectively (total n = 1512). In contrast, MAC participants (age 68.5) had a median of 14,322 higher impacts/week. In the three population cohorts combined, based on comparison of beta coefficients, moderate-high-impact activities as assessed by PA questionnaire were suggestive of stronger association with higher impacts from accelerometers (0.25 [0.17, 0.34]), compared with medium (0.18 [0.09, 0.27]) and low impacts (0.13 [0.07,0.19]) (beta coefficient, with 95 % CI). Likewise in MAC, reported moderate-high-impact activities showed a stronger association with higher impacts (0.26 [0.14, 0.37]), compared with medium (0.14 [0.05, 0.22]) and low impacts (0.03 [−0.02, 0.08]).
Conclusions: Our new accelerometer method appears to provide valid measures of higher vertical impacts in older adults. Results obtained from the three population-based cohorts indicate that older adults generally experience very limited higher impact weight-bearing PA
Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion
Adiposity in early, middle and later adult life and cardiometabolic risk markers in later life; findings from the British regional heart study.
OBJECTIVES: This research investigates the associations between body mass index (BMI) at 21, 40-59, 60-79 years of age on cardiometabolic risk markers at 60-79 years. METHODS: A prospective study of 3464 British men with BMI measured at 40-59 and 60-79 years, when cardiometabolic risk was assessed. BMI at 21 years was ascertained from military records, or recalled from middle-age (adjusted for reporting bias); associations between BMI at different ages and later cardiometabolic risk markers were examined using linear regression. Sensitive period, accumulation and mobility life course models were devised for high BMI (defined as BMI≥75th centile) and compared with a saturated BMI trajectory model. RESULTS: At ages 21, 40-59 and 60-79 years, prevalences of overweight (BMI≥25 kg/m2) were 12%, 53%, 70%, and obesity (≥30 kg/m2) 1.6%, 6.6%, and 17.6%, respectively. BMI at 21 years was positively associated with serum insulin, blood glucose, and HbA1c at 60-79 years, with increases of 1.5% (95%CI 0.8,2.3%), 0.4% (0.1,0.6%), 0.3% (0.1,0.4%) per 1 kg/m2, respectively, but showed no associations with blood pressure or blood cholesterol. However, these associations were modest compared to those between BMI at 60-79 years and serum insulin, blood glucose and HbA1c at 60-79 years, with increases of 8.6% (8.0,9.2%), 0.7% (0.5,0.9%), and 0.5% (0.4,0.7%) per 1 kg/m2, respectively. BMI at 60-79 years was also associated with total cholesterol and blood pressure. Associations for BMI at 40-59 years were mainly consistent with those of BMI at 60-79 years. None of the life course models fitted the data as well as the saturated model for serum insulin. A sensitive period at 50 years for glucose and HbA1c and sensitive period at 70 years for blood pressure were identified. CONCLUSIONS: In this cohort of men who were thin compared to more contemporary cohorts, BMI in later life was the dominant influence on cardiovascular and diabetes risk. BMI in early adult life may have a small long-term effect on diabetes risk
A survey of diamagnetic probes for copper(2+) binding to the prion protein. H-1 NMR solution structure of the palladium(2+) bound single octarepeat
The prion protein (PrPC) is a copper binding cell surface glycoprotein which when misfolded causes transmissible spongiform encephalopathies. The cooperative binding of Cu2+ to an unstructured octarepeat sequence within PrPC causes profound folding of this region. The use of NMR to determine the solution structure of the octarepeat region of PrP with Cu2+ bound has been hampered by the paramagnetic nature of the Cu2+ ions. Using NMR we have investigated the binding of candidate diamagnetic replacement ions, to the octarepeat region of PrP. We show that Pd2+ forms diamagnetic complexes with the peptides HGGG, HGGGW and QPHGGGWGQ with 1 : 1 stoichiometry The H-1 NMR spectra indicate that these peptides are in slow-exchange between free and bound Pd2+ on the chemical-shift time-scale. We demonstrate that the Pd-peptide complex forms slowly with a time taken to reach half-maximal signal of 3 hours. Other candidate metal ions, Ni2+, Pt2+ and Au3+, were investigated but only the Pd2+ complexes gave resolvable H-1 NMR spectra. We have determined the solution structure of the QPHGGGWGQ-Pd 1 : 1 complex using 71 NOE distance restraints. A backbone RMSD of 0.30 angstrom was observed over residues 3 to 7 in the final ensemble. The co-ordinating ligands consist of the histidine imidazole side chain N epsilon, the amide N of the second and third glycines with possibly H2O as the fourth ligand. The co-ordination geometry differs markedly from that of the HGGGW-Cu crystal structure. This survey of potential replacement metal ions to Cu2+ provides insight into the metal specificity and co-ordination chemistry of the metal bound octarepeats
Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity
This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning residues 94–233. Epitopes of specific antibodies were mapped using solid-phase Pepscan analysis and clustered to four distinct regions within the PrP molecule. We have demonstrated the utility of these antibodies by use of Western blotting and immunohistochemistry in tissues from a range of different species affected by transmissible spongiform encephalopathy (TSE). In comparative tests against extensively-used and widely-published, commercially available antibodies, similar or improved results can be obtained using these new mAbs, specifically in terms of sensitivity of detection. Since many of these antibodies recognise native PrPC, they could also be applied to a broad range of immunoassays such as flow cytometry, DELFIA analysis or immunoprecipitation. We are using these reagents to increase our understanding of TSE pathogenesis and for use in potential diagnostic screening assays
The exposed Mule Creek vent deposits record the structure of a volcanic conduit during a hybrid explosive–effusive eruption
Silicic volcanic eruptions commonly begin with the explosive ejection of pyroclastic material, before transitioning to gentler effusion-dominated activity. Well-exposed dissected silicic systems are scarce and poorly studied, hindering the advances in our understanding of the explosive–effusive transition needed to improve interpretations of volcanic unrest and hazard forecasting. The Mule Creek vent (New Mexico, USA) is a dissected silicic conduit that records the processes controlling conduit formation and evolution, and the role tuffisites (fractures filled with variably welded pyroclasts) play in conduit dynamics. Here, we use decimeter-scale photo-mapping of lithostratigraphic units and thin section analysis to differentiate and interpret three dominant emplacement styles during vent evolution. First, there was repeated deposition and erosion of pyroclastic material at the conduit walls, recorded by erosive surfaces in pyroclastic breccia and agglomerates at the conduit margins. Second, sub-vertical domains of dense melt-dominated magma were emplaced and preserved as glass-dominated vitrophyre and brecciated vitrophyre, with the textural hallmarks of assembly from welding of pyroclasts. Finally, the sub-horizontal fracturing of previously deposited lithologies produced laterally cross-cutting tuffisites. The vent deposits track the widening and then narrowing of the conduit through time and reflect progressive insulation and generally higher temperatures towards the conduit center as pyroclasts accumulate. Welding of pyroclastic fill and the formation of dense vitrophyres towards the conduit center lowers deposit porosity and effective wall permeability. This drives localized gas pressure increases and results in gas-driven fracturing, generating tuffisites, which act as transient outgassing pathways. The structure of the Mule Creek vent records an explosive–effusive transition, constraining the processes controlling conduit evolution and aiding our interpretation of volcanic unrest
- …
