7 research outputs found
GEOCHEMISTRY OF EUROPEAN BOTTLED WATER
In Europe, ca. 1900 "mineral water" brands are officially registered and bottled for drinking. Bottled waters is groundwater and is in large parts of the continent rapidly developing into the main supply of drinking water for the general population.
This book is the first state of the art overview of the chemistry of groundwaters from 40 European countries from Portugal to Russia, measured on 1785 bottled water samples, equivalent to 1189 distinct bottled water brands from 1247 wells in 884 locations plus an additional 500 tap water samples acquired in 2008 by the network of EuroGeoSurveys experts all across Europe.
In contrast to previously available compilations, all chemical data (contained on the enclosed CD) were measured in a single laboratory, under strict quality control with high internal and external reproducibility, affording a single high quality, internally consistent dataset. More than 70 parameters were determined on every sample using state of the art analytical ..
The EuroGeoSurveys GEochemical Mapping of Agricultural and grazing land Soils project (GEMAS) - Evaluation of quality control results of total C and S, total organic carbon (TOC), cation exchange capacity (CEC), XRF, pH, and particle size distribution (PSD) analysis
URBAN GEOCHEMICAL STUDIES IN EUROPE
Urban soil is generally contaminated to a variable degree depending on its proximity to contamination sources. Traffic is one of the main sources of urban contamination; lead (Pb) from the use of leaded petrol, zinc (Zn) and cadmium (Cd) from tyre wear, antimony (Sb) from break pads, and the platinum group elements (PGEs) from the wear of catalytic converters, are some typical elements that often reach high concentrations in the urban environment. Lead was also a key ingredient in white paint, and in towns with a high proportion of white wooden houses very high concentrations were found in soil. Crematoria can or have emitted mercury (Hg). Coal and heavy oil fired municipal power and heating stations emit sulphur (S), silver (Ag), vanadium (V), bromine (Br) and barium (Ba). The use of impregnated wood may have resulted in high concentrations of arsenic (As), especially in kindergartens (nursery schools) and playgrounds. Building materials (plaster and paint) may also contain high concentrations of organic contaminants, especially polychlorinated biphenyls (PCBs), which again end up in urban soil. Coal and wood burning, the use of diesel fuel, and the production of coke, all lead to the emission of polycyclic aromatic hydrocarbons (PAHs). There exist countless other sources of local contamination in towns, and there is thus every reason to be concerned about the quality of the urban environment, and the suitability of soil for sensitive land uses, such as schools, playgrounds, parks and vegetable gardens. Contaminated urban soil may contaminate indoor dust and, therefore, to an increased human exposure to toxic chemicals. Consequently, the distribution of toxic contaminants in urban soil needs to be documented and known by city administration to avoid costly mistakes in land use planning, and further spreading of highly contaminated materials.
The EuroGeoSurveys \u2018Geochemistry\u2019 Expert Group during the compilation of a proposal to the Directors for a European wide urban geochemistry project, using a harmonised sampling and analytical methodology, it discovered that many urban geochemical studies have been performed in Europe by National Geological Surveys, which are not known to the wider geoscientific community. Since, the results of these studies are directly related to our quality of life, the EuroGeoSurveys \u2018Geo chemistry\u2019 Expert Group decided to publish at least one case study from each country in a book,which will be available in the second half of 2010. A concise description of some of these studies will be given in this paper
Uranium, Thorium and Potassium concentrations in agricultural and grazing land soils of Europe
U-Th signatures of agricultural soil at the European continental scale (GEMAS): Distribution, weathering patterns and processes controlling their concentrations
Agricultural soil (Ap-horizon, 0â\u80\u9320 cm) samples were collected in Europe (33 countries, 5.6 million km2) as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project. The GEMAS survey area includes diverse groups of soil parent materials with varying geological history, a wide range of climate zones, and landscapes. The soil data have been used to provide a general view of U and Th mobility at the continental scale, using aqua regia and MMI® extractions. The U-Th distribution pattern is closely related to the compositional variation of the geological bedrock on which the soil is developed and human impact on the environment has not concealed these genuine geochemical features. Results from both extraction methods (aqua regia and MMI®) used in this study support this general picture. Ternary plots of several soil parameters have been used to evaluate chemical weathering trends. In the aqua regia extraction, some relative Th enrichment-U loss is related to the influence of alkaline and schist bedrocks, due to weathering processes. Whereas U enrichment-Th loss characterizes soils developed on alkaline and mafic bedrock end-members on one hand and calcareous rock, with a concomitant Sc depletion (used as proxy for mafic lithologies), on the other hand. This reflects weathering processes sensu latu, and their role in U retention in related soils. Contrary to that, the large U enrichment relative to Th in the MMI® extraction and the absence of end-member parent material influence explaining the enrichment indicates that lithology is not the cause of such enrichment. Comparison of U and Th to the soil geological parent material evidenced i) higher capability of U to be weathered in soils and higher resistance of Th to weathering processes and its enrichment in soils; and, ii) the MMI® extraction results show a greater affinity of U than Th for the bearing phases like clays and organic matter. The comparison of geological units with U anomalies in agricultural soil at the country scale (France) enables better understanding of U sources in the surficial environment and can be a useful tool in risk assessments
Geochemical atlases of Europe produced by the EuroGeoSurveys Geochemistry Expert Group: state of progress and potential uses.
An ‘Atlas’is a collection of maps usually published in a book form. A ‘Geochemical Atlas’is a thematic special purpose atlas with maps describing the geographical distribution of chemical elements and other physico-chemical parameters in different natural sample media, such as stream sediment, overbank or floodplain sediment, stream water, ground water, soil, plants, etc. Because our standard of living and health depend closely on the chemistry of near-surface materials, such atlases that provide data on the state of our environment are important for policy and decision makers, but also for researchers and citizens alike. The EuroGeoSurveys Geochemistry Expert Group is dedicated to provide harmonised multi-purpose geochemical data bases, and has already published the Geochemical Atlas of Europe, and is in the process of preparing the Atlas of Ground water eochemistry of Europe, and the Atlas of Agricultural and Grazing Land Soils. An important aspect is that all raw data, quality control information, statistics, maps and interpretation texts are freely available for downloading through the internet
