10,718 research outputs found
The use of chronosequences in studies of ecological succession and soil development
1. Chronosequences and associated space-for-time substitutions are an important and often necessary tool for studying temporal dynamics of plant communities and soil development across multiple time-scales. However, they are often used inappropriately, leading to false conclusions about ecological patterns and processes, which has prompted recent strong criticism of the approach. Here, we evaluate when chronosequences may or may not be appropriate for studying community and ecosystem development.
2. Chronosequences are appropriate to study plant succession at decadal to millennial time-scales when there is evidence that sites of different ages are following the same trajectory. They can also be reliably used to study aspects of soil development that occur between temporally linked sites over time-scales of centuries to millennia, sometimes independently of their application to shorter-term plant and soil biological communities.
3. Some characteristics of changing plant and soil biological communities (e.g. species richness, plant cover, vegetation structure, soil organic matter accumulation) are more likely to be related in a predictable and temporally linear manner than are other characteristics (e.g. species composition and abundance) and are therefore more reliably studied using a chronosequence approach.
4. Chronosequences are most appropriate for studying communities that are following convergent successional trajectories and have low biodiversity, rapid species turnover and low frequency and severity of disturbance. Chronosequences are least suitable for studying successional trajectories that are divergent, species-rich, highly disturbed or arrested in time because then there are often major difficulties in determining temporal linkages between stages.
5. Synthesis. We conclude that, when successional trajectories exceed the life span of investigators and the experimental and observational studies that they perform, temporal change can be successfully explored through the judicious use of chronosequences
Effect of environment on biological burden during spacecraft assembly
Determining effects of environment on accumulation of biological burden on spacecraft during assembl
Extended OH(1720 MHz) Maser Emission from Supernova Remnants
Compact OH(1720 MHz) masers have proven to be excellent signposts for the
interaction of supernova remnants with adjacent molecular clouds. Less
appreciated has been the weak, extended OH(1720 MHz) emission which accompanies
strong compact maser sources. Recent single-dish and interferometric
observations reveal the majority of maser-emitting supernova remnants have
accompanying regions of extended maser emission. Enhanced OH abundance created
by the passing shock is observed both as maser emission and absorption against
the strong background of the remnant. Modeling the observed OH profiles gives
an estimate of the physical conditions in which weak, extended maser emission
arises. I will discuss how we can realize the utility of this extended maser
emission, particularly the potential to measure the strength of the post-shock
magnetic field via Zeeman splitting over these large-scales.Comment: 5 Pages, 2 Figures, To appear in IAU 242, Astrophysical Masers and
Their Environments, eds. J. Chapman & W. Baa
The Highest Redshift Relativistic Jets
We describe our efforts to understand large-scale (10's-100's kpc)
relativistic jet systems through observations of the highest-redshift quasars.
Results from a VLA survey search for radio jets in ~30 z>3.4 quasars are
described along with new Chandra observations of 4 selected targets.Comment: 5 pages, 2 figures, to appear in Extragalactic Jets: Theory and
Observation from Radio to Gamma Ray, Eds. T.A. Rector and D.S. De Youn
ALMA and VLA Observations: Evidence for Ongoing Low-mass Star Formation near Sgr A*
Using the VLA, we recently detected a large number of protoplanetary disk
(proplyd) candidates lying within a couple of light years of the massive black
hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the
young massive stars located near Sgr A*. Similar to Orion proplyds, the strong
UV radiation from the cluster of massive stars at the Galactic center is
expected to photoevaporate and photoionize the circumstellar disks around
young, low mass stars, thus allowing detection of the ionized outflows from the
photoionized layer surrounding cool and dense gaseous disks. To confirm this
picture, ALMA observations detect millimeter emission at 226 GHz from five
proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We
present the derived disk masses for four sources as a function of the assumed
dust temperature. The mass of protoplanetary disks from cool dust emission
ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the
disk masses found in star forming sites in the Galaxy. These measurements show
the presence of on-going star formation with the implication that gas clouds
can survive near Sgr A* and the relative importance of high vs low-mass star
formation in the strong tidal and radiation fields of the Galactic center.Comment: 13 pages, 3 figures, MNRAS (in press
Enhancing the decision-making process of project managers in the built environment: An integrated approach
A study of the project manager’s (PM) function must be to examine: what their role is, their skills, and training needed. The project manager needs wide perspective regarding the classic management functions of control, coordination, communication, and the settling of performance standards. If the PM is a professional, their performance must be of the highest standard, and must be accountable for a high level of productivity. This is the project manager’s Achilles heel.
Another problem is the absence of feedback during the early stages through to completion of the project. During the project’s life the relative importance of their responsibilities may change several times, including the constant changing of the dynamic environment. The PM will aim for a balanced emphasis; they will try to be flexible so they can adapt to new circumstances as they occur. The PM needs tried and tested methods to aid his decision making. This paper posits an integrated development and use of methods such as; scenario planning, effectuation, and reflective thinking to enhance decision making. The paper concludes with potential benefits that this method brings to the PM when fully understood and tested in the application domain
ALMA Detection of Bipolar Outflows: Evidence for Low Mass Star Formation within 1pc of Sgr A*
We report the discovery of 11 bipolar outflows within a projected distance of
1pc from Sgr A* based on deep ALMA observations of CO, H30 and
SiO (5-4) lines with sub-arcsecond and km/s, resolutions. These
unambiguous signatures of young protostars manifest as approaching and receding
lobes of dense gas swept up by the jets created during the formation and early
evolution of stars. The lobe masses and momentum transfer rates are consistent
with young protostellar outflows found throughout the disk of the Galaxy. The
mean dynamical age of the outflow population is estimated to be
years. The rate of star formation is
\msol\,yr assuming a mean stellar mass of
\msol. This discovery provides evidence that star formation is taking place
within clouds surprisingly close to Sgr A*, perhaps due to events that compress
the host cloud, creating condensations with sufficient self-gravity to resist
tidal disruption by Sgr A*. Low-mass star formation over the past few billion
years at this level would contribute significantly to the stellar mass budget
in the central few pc of the Galaxy. The presence of many dense clumps of
molecular material within 1pc of Sgr A* suggests that star formation could take
place in the immediate vicinity of supermassive black holes in the nuclei of
external galaxiesComment: 17 pages, 4 figure
Radio Continuum Observations of the Galactic Center: Photoevaporative Proplyd-like Objects near Sgr A*
We present radio images within 30 of Sgr A* based on recent VLA
observations at 34 GHz with 7.8 microJy sensitivity and resolution
milliarcseconds (mas). We report 44 partially resolved compact
sources clustered in two regions in the E arm of ionized gas that orbits Sgr
A*. These sources have size scales ranging between ~50 and 200 mas (400 to 1600
AUs), and a bow-shock appearance facing the direction of Sgr A*. Unlike the
bow-shock sources previously identified in the near-IR but associated with
massive stars, these 34 GHz sources do not appear to have near-IR counterparts
at 3.8 m. We interpret these sources as a candidate population of
photoevaporative protoplanetary disks (proplyds) that are associated with newly
formed low mass stars with mass loss rates ~10^{-7} - 10^{-6} solar mass per
year and are located at the edge of a molecular cloud outlined by ionized gas.
The disks are externally illuminated by strong Lyman continuum radiation from
the ~100 OB and WR massive stars distributed within 10'' of Sgr A*. The
presence of proplyds implies current in-situ star formation activity near Sgr
A* and opens a window for the first time to study low mass star, planetary and
brown dwarf formations near a supermassive black hole.Comment: 13 pages, 4 figures, ApJL (in press
- …
