1,847 research outputs found

    Work-Related Mental Health and Job Performance: Can Mindfulness Help?

    Get PDF
    Work-related mental health issues such as work-related stress and addiction to work impose a significant health and economic burden to the employee, the employing organization, and the country of work more generally. Interventions that can be empirically shown to improve levels of work-related mental health – especially those with the potential to concurrently improve employee levels of work performance – are of particular interest to occupational stakeholders. One such broad-application interventional approach currently of interest to occupational stakeholders in this respect is mindfulness-based interventions (MBIs). Following a brief explication of the mindfulness construct, this paper critically discusses current research directions in the utilization of mindfulness in workplace settings and assesses its suitability for operationalization as an organization-level work-related mental health intervention. By effecting a perceptual-shift in the mode of responding and relating to sensory and cognitive-affective stimuli, employees that undergo mindfulness training may be able to transfer the locus of control for stress from external work conditions to internal metacognitive and attentional resources. Therefore, MBIs may constitute cost-effective organization-level interventions due to not actually requiring any modifications to human resource management systems and practises. Based on preliminary empirical findings and on the outcomes of MBI studies with clinical populations, it is concluded that MBIs appear to be viable interventional options for organizations wishing to improve the mental health of their employees

    Probing N-glycoprotein microheterogeneity by lectin affinity purification-mass spectrometry analysis

    Get PDF
    Lectins are carbohydrate binding proteins that recognize specific epitopes present on target glycoproteins. Changes in lectin-reactive carbohydrate repertoires are related to many biological signaling pathways and recognized as hallmarks of several pathological processes. Consequently, lectins are valuable probes, commonly used for examining glycoprotein structural and functional microheterogeneity. However, the molecular interactions between a given lectin and its preferred glycoproteoforms are largely unknown due to the inherent complexity and limitations of methods used to investigate intact glycoproteins. Here, we apply a lectin-affinity purification procedure coupled with native mass spectrometry to characterize lectin-reactive glycoproteoforms at the intact protein level. We investigate the interactions between the highly fucosylated and highly branched glycoproteoforms of haptoglobin and α1-acid glycoprotein using two different lectins Aleuria aurantia lectin (AAL) and Phaseolus vulgaris leucoagglutinin (PHA-L), respectively. Firstly we show a co-occurrence of fucosylation and N-glycan branching on haptoglobin, particularly among highly fucosylated glycoproteoforms. Secondly, we analyze the global heterogeneity of highly branched glycoproteoforms of haptoglobin and α1-acid glycoprotein and reveal that while multi-fucosylation attenuates the lectin PHA-L binding to haptoglobin, it has no impact on AGP. Taken together, our lectin affinity purification native MS approach elucidates lectin specificities between intact glycoproteins, not achievable by other methods. Moreover, since aberrant glycosylation of Hp and AGP are potential markers for many diseases, including pancreatic, hepatic and ovarian cancers, understanding their interactions with lectins will help the development of carbohydrate-centric monitoring methods to understand their pathophysiological implications

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Has education lost sight of children?

    Get PDF
    The reflections presented in this chapter are informed by clinical and personal experiences of school education in the UK. There are many challenges for children and young people in the modern education system and for the professionals who support them. In the UK, there are significant gaps between the highly selective education provided to those who pay privately for it and to the majority of those educated in the state-funded system. Though literacy rates have improved around the world, many children, particularly boys, do not finish their education for reasons such as boredom, behavioural difficulties or because education does not ‘pay’. Violence, bullying, and sexual harassment are issues faced by many children in schools and there are disturbing trends of excluding children who present with behavioural problems at school whose origins are not explored. Excluded children are then educated with other children who may also have multiple problems which often just make the situation worse. The experience of clinicians suggests that school-related mental health problems are increasing in severity. Are mental health services dealing with the consequences of an education system that is not meeting children’s needs? An education system that is testing- and performance-based may not be serving many children well if it is driving important decisions about them at increasingly younger ages. Labelling of children and setting them on educational career paths can occur well before they reach secondary schools, limiting potential very early on in their developmental trajectory. Furthermore, the emphasis at school on testing may come at the expense of creativity and other forms of intelligence, which are also valuable and important. Meanwhile the employment marketplace requires people with widely different skills, with an emphasis on innovation, creativity, and problem solving. Is education losing sight of the children it is educating

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    A comparison of spin-flip TDDFT-based conical intersection approaches with XMS-CASPT2

    Get PDF
    Determining conical intersection geometries is of key importance to understanding the photochemical reactivity of molecules. While many small to medium-sized molecules can be treated accurately using multireference approaches, larger molecules require a less computationally demanding approach. In this work, minimum energy crossing point conical intersection geometries for a series of molecules has been studied using spin-flip TDDFT (SF-TDDFT), within the Tamm-Dancoff Approximaton, both with and without explicit calculation of non-adiabatic coupling terms, and compared with both XMS-CASPT2 and CASSCF calculated geometries. The less-computationally demanding algorithms, which do not require explicit calculation of the non-adiabatic coupling terms, generally fare well with the XMS-CASPT2 reference structures, while the relative energetics are only reasonably replicated with the MECP structure calculated with the BHHLYP functional and full non-adiabatic coupling terms. We also demonstrate that, occasionally, CASSCF structures deviate quantitatively from the XMS-CASPT2 structures, showing the importance of including dynamical correlation
    corecore