104 research outputs found
Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments
A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system
Natriuretic peptides in the detection of preclinical diastolic or systolic dysfunction
The diagnostic value of natriuretic peptides in asymptomatic patients at risk for diastolic or systolic HF is controversial. We tested (1) the prevalence of preclinical LV dysfunction in an at-risk cohort; (2) the diagnostic accuracy of natriuretic peptides alone or in combination with clinical parameters for predicting asymptomatic left ventricular systolic or diastolic dysfunction. 542 primary care patients (mean age 63 +/- A 11 years, 42% female) without prediagnosed HF, but with risk factors for left ventricular dysfunction, underwent thorough cardiological workup, including echocardiography and analysis of natriuretic peptides. 23 patients (4%) showed reduced systolic function (EF < 50%), and 15 patients (3%) had severe diastolic dysfunction. All natriuretic peptides significantly increased with decreasing ejection fraction and with increasing degree of diastolic dysfunction. For natriuretic peptides, receiver operating characteristics analysis yielded good results for the detection of systolic dysfunction or severe diastolic dysfunction. Combining clinical parameters with natriuretic peptide data improved the diagnostic accuracy and largely reduced the number of needed screening echoes to identify patients with LV systolic or diastolic dysfunction. The prevalence of preclinical diastolic dysfunction is high in primary care patients at risk, but the relative prevalence of severe diastolic dysfunction and systolic dysfunction is only 7%. High-risk individuals may be screened most efficiently by using a score system incorporating clinical data and NT-proBNP.German Federal Ministry of Education and Research [FKZ 01GI0205
Early Release Science of the exoplanet WASP-39b with JWST NIRISS
The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1–4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5–9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6–2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement (‘metallicity’) of about 10–30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet’s terminator
Recommended from our members
The transiting exoplanet community early release science program for JWST
The transiting exoplanet community early release science program for JWST
The James Webb Space Telescope (JWST) presents the opportunity to transform
our understanding of planets and the origins of life by revealing the
atmospheric compositions, structures, and dynamics of transiting exoplanets in
unprecedented detail. However, the high-precision, time-series observations
required for such investigations have unique technical challenges, and prior
experience with other facilities indicates that there will be a steep learning
curve when JWST becomes operational. In this paper we describe the science
objectives and detailed plans of the Transiting Exoplanet Community Early
Release Science (ERS) Program, which is a recently approved program for JWST
observations early in Cycle 1. The goal of this project, for which the obtained
data will have no exclusive access period, is to accelerate the acquisition and
diffusion of technical expertise for transiting exoplanet observations with
JWST, while also providing a compelling set of representative datasets that
will enable immediate scientific breakthroughs. The Transiting Exoplanet
Community ERS Program will exercise the time-series modes of all four JWST
instruments that have been identified as the consensus highest priorities,
observe the full suite of transiting planet characterization geometries
(transits, eclipses, and phase curves), and target planets with host stars that
span an illustrative range of brightnesses. The observations in this program
were defined through an inclusive and transparent process that had
participation from JWST instrument experts and international leaders in
transiting exoplanet studies. Community engagement in the project will be
centered on a two-phase Data Challenge that culminates with the delivery of
planetary spectra, time-series instrument performance reports, and open-source
data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST
mission
Early Release Science of the exoplanetWASP-39b with JWST NIRISS
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData Availability:
The raw data from this study are publicly available via the Space Science Telescope Institute's
Mikulski Archive for Space Telescopes (https://archive.stsci.edu/). The data which was used to
create all of the figures in this manuscript are freely available on Zenodo and GitHub (Zenodo
Link;https://github.com/afeinstein20/wasp39b_niriss_paper). All additional data is available upon
request.Code Availability:
The following are open-source pipelines written in Python that are available either through the
Python Package Index (PyPI) or GitHub that were used throughout this work:
Eureka! (https://github.com/kevin218/Eureka); nirHiss (https://github.com/afeinstein20/nirhiss);
supreme-SPOON (https://github.com/radicamc/supreme-spoon); transitspectroscopy
(https://github.com/nespinoza/transitspectroscopy/tree/dev); iraclis (https://github.com/uclexoplanets/Iraclis); juliet (https://github.com/nespinoza/juliet); chromatic
(https://github.com/zkbt/chromatic); chromatic_fitting
(https://github.com/catrionamurray/chromatic_fitting); ExoTiC-LD54, 121
(https://github.com/Exo-TiC/ExoTiC-LD); ExoTETHyS122 (https://github.com/uclexoplanets/ExoTETHyS); PICASO88,89 (https://github.com/natashabatalha/picaso); Virga94, 95
(https://github.com/natashabatalha/virga); CHIMERA (https://github.com/mrline/CHIMERA);
PyMultiNest (https://github.com/JohannesBuchner/PyMultiNest); MultiNest
(https://github.com/JohannesBuchner/MultiNest)The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality. Here, we present the transmission spectrum of WASP-39 b obtained using the SOSS mode of the NIRISS instrument on JWST. This spectrum spans 0.6–2.8m in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, and signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy element enhancement (“metallicity”) of ~10–30x the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet’s terminator.Leverhulme TrustUK Research and Innovatio
Linking Microbial and Ecosystem Ecology Using Ecological Stoichiometry: A Synthesis of Conceptual and Empirical Approaches
Was the earliest documented account of tornado dynamics published by an Indian scientist in an Indian journal?
A Novel Intelligent Two-Way Communication System for Remote Heart Failure Medication Uptitration (the CardioCoach Study): Randomized Controlled Feasibility Trial
- …
