2,200 research outputs found
A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available. © 2013 Capra et al
A meta-analytic review of stand-alone interventions to improve body image
Objective
Numerous stand-alone interventions to improve body image have been developed. The
present review used meta-analysis to estimate the effectiveness of such interventions, and
to identify the specific change techniques that lead to improvement in body image.
Methods
The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on
improving body image), (b) a control group was used, (c) participants were randomly
assigned to conditions, and (d) at least one pretest and one posttest measure of body
image was taken. Effect sizes were meta-analysed and moderator analyses were conducted.
A taxonomy of 48 change techniques used in interventions targeted at body image
was developed; all interventions were coded using this taxonomy.
Results
The literature search identified 62 tests of interventions (N = 3,846). Interventions produced
a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in
beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies
(d+ = -0.72). However, the effect size for body image was inflated by bias both within
and across studies, and was reliable but of small magnitude once corrections for bias were
applied. Effect sizes for the other outcomes were no longer reliable once corrections for
bias were applied. Several features of the sample, intervention, and methodology moderated
intervention effects. Twelve change techniques were associated with improvements in
body image, and three techniques were contra-indicated.
Conclusions
The findings show that interventions engender only small improvements in body image, and
underline the need for large-scale, high-quality trials in this area. The review identifies effective
techniques that could be deployed in future interventions
Building Online Platforms for Peer Support Groups as a Persuasive Behavioural Change Technique
Online peer group approach is inherently a persuasive technique as it is centered on peer pressure and surveillance. They are persuasive social net- works equipped with tools and facilities that enable behaviour change. This paper presents the case for domain-specific persuasive social networks and provides insights on problematic and addictive behaviour change. A 4-month study was conducted in an addiction rehab centre in the UK, followed by 2-month study in an online peer group system. The study adopted qualitative methods to under- stand the broad parameters of peer groups including the sessions' environment, norms, interaction styles occurring between groups' members and how such in- teractions are governed. The qualitative techniques used were (1) observations, (2) form and document analysis, and (3) semi-structured interviews. The findings concern governing such groups in addition to the roles to be enabled and tasks to be performed. The Honeycomb framework was revisited to comment on its build- ing blocks with the purpose of highlighting points to consider when building do- main-specific social networks for such domain, i.e. online peer groups to combat addictive behaviour
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo
Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Buses, cars, bicycles and walkers the influence of the type of human transport on the flight responses of waterbirds
One way to manage disturbance to waterbirds in natural areas where humans require access is to promote the occurrence of stimuli for which birds tolerate closer approaches, and so cause fewer responses. We conducted 730 experimental approaches to 39 species of waterbird, using five stimulus types (single walker, three walkers, bicycle, car and bus) selected to mimic different human management options available for a controlled access, Ramsar-listed wetland. Across species, where differences existed (56% of 25 cases), motor vehicles always evoked shorter flight-initiation distances (FID) than humans on foot. The influence of stimulus type on FID varied across four species for which enough data were available for complete cross-stimulus analysis. All four varied FID in relation to stimuli, differing in 4 to 7 of 10 possible comparisons. Where differences occurred, the effect size was generally modest, suggesting that managing stimulus type (e.g. by requiring people to use vehicles) may have species-specific, modest benefits, at least for the waterbirds we studied. However, different stimulus types have different capacities to reduce the frequency of disturbance (i.e. by carrying more people) and vary in their capacity to travel around important habita
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Small molecule anionophores promote transmembrane anion permeation matching CFTR activity
Anion selective ionophores, anionophores, are small molecules capable of facilitating the
transmembrane transport of anions. Inspired in the structure of natural product prodigiosin, four
novel anionophores 1a-d, including a 1,2,3-triazole group, were prepared. These compounds proved
highly efficient anion exchangers in model phospholipid liposomes. The changes in the hydrogen bond
cleft modified the anion transport selectivity exhibited by these compounds compared to prodigiosin
and suppressed the characteristic high toxicity of the natural product. Their activity as anionophores
in living cells was studied and chloride efflux and iodine influx from living cells mediated by these
derivatives was demonstrated. These compounds were shown to permeabilize cellular membranes
to halides with efficiencies close to the natural anion channel CFTR at doses that do not compromise
cellular viability. Remarkably, optimal transport efficiency was measured in the presence of pH
gradients mimicking those found in the airway epithelia of Cystic Fibrosis patients. These results
support the viability of developing small molecule anionophores as anion channel protein surrogates
with potential applications in the treatment of conditions such as Cystic Fibrosis derived from the
malfunction of natural anion transport mechanisms.European Union’s Horizon 2020 research and innovation programme under grant agreement No. 667079, La Marató de TV3 Foundation (20132730), Consejería de Educación de la Junta de Castilla y León (Projects BU340U13 and BU092U16
- …
