51 research outputs found

    Acquired immunologic tolerance: with particular reference to transplantation

    Get PDF
    The first unequivocally successful bone marrow cell transplantation in humans was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. Lancet 2: 1366–1369, 1968). This achievement was a direct extension of mouse models of acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (i.e. kidney) transplantation was accomplished precociously in humans (in 1959) before demonstrating its feasibility in any experimental model and in the absence of a defensible immunologic rationale. Due to the striking differences between the outcomes with the two kinds of procedure, the mechanisms of organ engraftment were long thought to differ from the leukocyte chimerism-associated ones of bone marrow transplantation. This and other concepts of alloengraftment and acquired tolerance have changed over time. Current concepts and their clinical implications can be understood and discussed best from the perspective provided by the life and times of Bob Good

    Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora

    Get PDF
    Background: The vaginal microflora is important for maintaining vaginal health and preventing infections of the reproductive tract. The rectum has been suggested as the major source for the colonisation of the vaginal econiche. Methods: To establish whether the rectum can serve as a possible bacterial reservoir for colonisation of the vaginal econiche, we cultured vaginal and rectal specimens from pregnant women at 35-37 weeks of gestation, identified the isolates to the species level with tRNA intergenic length polymorphism analysis (tDNA-PCR) and genotyped the isolates for those subjects from which the same species was isolated simultaneously vaginally and rectally, by RAPD-analysis. One vaginal and one rectal swab were collected from a total of each of 132 pregnant women at 35-37 weeks of gestation. Swabs were cultured on Columbia CNA agar and MRS agar. For each subject 4 colonies were selected for each of both sites, i.e. 8 colonies in total. Results: Among the 844 isolates that could be identified by tDNA-PCR, a total of 63 bacterial species were present, 9 (14%) only vaginally, 26 (41%) only rectally, and 28 (44%) in both vagina and rectum. A total of 121 (91.6%) of 132 vaginal samples and 51 (38.6%) of 132 rectal samples were positive for lactobacilli. L. crispatus was the most frequently isolated Lactobacillus species from the vagina (40% of the subjects were positive), followed by L. jensenii (32%), L. gasseri (30%) and L. iners (11%). L. gasseri was the most frequently isolated Lactobacillus species from the rectum (15%), followed by L. jensenii (12%), L. crispatus (11%) and L. iners (2%). A total of 47 pregnant women carried the same species vaginally and rectally. This resulted in 50 vaginal/rectal pairs of the same species, for a total of eight different species. For 34 of the 50 species pairs (68%), isolates with the same genotype were present vaginally and rectally and a high level of genotypic diversity within species per subject was also established. Conclusion: It can be concluded that there is a certain degree of correspondence between the vaginal and rectal microflora, not only with regard to species composition but also with regard to strain identity between vaginal and rectal isolates. These results support the hypothesis that the rectal microflora serves as a reservoir for colonisation of the vaginal econiche

    Culture Enriched Molecular Profiling of the Cystic Fibrosis Airway Microbiome

    Get PDF
    The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured
    corecore