2,179 research outputs found
Overdamped dynamics of a Brownian particle levitated in a Paul trap
We study the dynamics of the center of mass of a Brownian particle levitated
in a Paul trap. We focus on the overdamped regime in the context of
levitodynamics, comparing theory with our numerical simulations and
experimental data from a nanoparticle in a Paul trap. We provide an exact
analytical solution to the stochastic equation of motion, expressions for the
standard deviation of the motion, and thermalization times by using the WKB
method under two different limits. Finally, we prove the power spectral density
of the motion can be approximated by that of an Ornstein-Uhlenbeck process and
use the found expression to calibrate the motion of a trapped particle
К вопросу о зависимости характеристик демпфирующих сил в моторных установках от момента инерции маховика
Rosaceous Chamaebatiaria-Like Foliage from the Paleogene of Western North America
Chamaebatiaria and Chamaebatia, two characteristic genera of the Californian floristic province, are traditionally placed in different subfamilies of Rosaceae , Spiraeoideae and Rosoideae, respectively. Analysis of the foliar and reproductive characters of the extant species of these genera indicates that the two genera could be closely related and the assignment of Chamaebatia to Rosoideae invalid. Fossil leaves of lineages of both genera occur in the Paleogene montane floras of the Rocky Mountain region and provide evidence that the two lineages diverged from a common ancestor in the Eocene. The common ancestor probably was adapted to sunny habitats in mesic coniferous forest, and, during the post-Eocene, the two lineages were able to adapt to progressively drier climates. A third extant genus, the east Asian Sorbaria, also appears to be closely related to the California genera and to have been derived from the same common ancestor. New taxa and combinations proposed are: St onebergia columbiana. n. gen. and n. sp.; Salmonensea prefoliolosa (R. W. Br.), n. gen. and n. comb.; Stockeya creedensis (R. W. Br.), n. gen. and n. comb.; Stockeya montana, n. sp.; and Sorbaria wahrhaftigii, n. sp
Enhancement of Entanglement Percolation in Quantum Networks via Lattice Transformations
We study strategies for establishing long-distance entanglement in quantum
networks. Specifically, we consider networks consisting of regular lattices of
nodes, in which the nearest neighbors share a pure, but non-maximally entangled
pair of qubits. We look for strategies that use local operations and classical
communication. We compare the classical entanglement percolation protocol, in
which every network connection is converted with a certain probability to a
singlet, with protocols in which classical entanglement percolation is preceded
by measurements designed to transform the lattice structure in a way that
enhances entanglement percolation. We analyze five examples of such comparisons
between protocols and point out certain rules and regularities in their
performance as a function of degree of entanglement and choice of operations.Comment: 12 pages, 17 figures, revtex4. changes from v3: minor stylistic
changes for journal reviewer, minor changes to figures for journal edito
Linearity of cortical receptive fields measured with natural sounds
How do cortical neurons represent the acoustic environment? This question is often addressed by probing with simple stimuli such as clicks or tone pips. Such stimuli have the advantage of yielding easily interpreted answers, but have the disadvantage that they may fail to uncover complex or higher-order neuronal response properties. Here, we adopt an alternative approach, probing neuronal responses with complex acoustic stimuli, including animal vocalizations. We used in vivo whole-cell methods in the rat auditory cortex to record subthreshold membrane potential fluctuations elicited by these stimuli. Most neurons responded robustly and reliably to the complex stimuli in our ensemble. Using regularization techniques, we estimated the linear component, the spectrotemporal receptive field (STRF), of the transformation from the sound (as represented by its time-varying spectrogram) to the membrane potential of the neuron. We find that the STRF has a rich dynamical structure, including excitatory regions positioned in general accord with the prediction of the classical tuning curve. However, whereas the STRF successfully predicts the responses to some of the natural stimuli, it surprisingly fails completely to predict the responses to others; on average, only 11% of the response power could be predicted by the STRF. Therefore, most of the response of the neuron cannot be predicted by the linear component, although the response is deterministically related to the stimulus. Analysis of the systematic errors of the STRF model shows that this failure cannot be attributed to simple nonlinearities such as adaptation to mean intensity, rectification, or saturation. Rather, the highly nonlinear response properties of auditory cortical neurons must be attributable to nonlinear interactions between sound frequencies and time-varying properties of the neural encoder
Stratonovich-to-Ito transition in noisy systems with multiplicative feedback
Cataloged from PDF version of article.Intrinsically noisy mechanisms drive most physical, biological and economic phenomena. Frequently, the system's state influences the driving noise intensity (multiplicative feedback). These phenomena are often modelled using stochastic differential equations, which can be interpreted according to various conventions (for example, Ito calculus and Stratonovich calculus), leading to qualitatively different solutions. Thus, a stochastic differential equation-convention pair must be determined from the available experimental data before being able to predict the system's behaviour under new conditions. Here we experimentally demonstrate that the convention for a given system may vary with the operational conditions: we show that a noisy electric circuit shifts from obeying Stratonovich calculus to obeying Ito calculus. We track such a transition to the underlying dynamics of the system and, in particular, to the ratio between the driving noise correlation time and the feedback delay time. We discuss possible implications of our conclusions, supported by numerics, for biology and economics
Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant
We report on a new optical implementation of primary gas thermometry based on
laser absorption spectrometry in the near infrared. The method consists in
retrieving the Doppler broadening from highly accurate observations of the line
shape of the R(12) transition in
CO gas at thermodynamic equilibrium. Doppler width measurements as a
function of gas temperature, ranging between the triple point of water and the
gallium melting point, allowed for a spectroscopic determination of the
Boltzmann constant with a relative accuracy of .Comment: Submitted to Physical Review Letter
Disorder-Induced Order in Quantum XY Chains
We observe signatures of disorder-induced order in 1D XY spin chains with an
external, site-dependent uni-axial random field within the XY plane. We
numerically investigate signatures of a quantum phase transition at T=0, in
particular an upsurge of the magnetization in the direction orthogonal to the
external magnetic field, and the scaling of the block-entropy with the
amplitude of this field. Also, we discuss possible realizations of this effect
in ultra-cold atom experiments
On Random Field Induced Ordering in the Classical XY Model
Consider the classical XY model in a weak random external field pointing
along the axis with strength . We study the behavior of this
model as the range of the interaction is varied. We prove that in any dimension
and for all sufficiently small, there is a range
so that whenever the inverse temperature is larger than
some , there is strong residual ordering along the
direction.Comment: 30 page
- …
