2,104 research outputs found
Magnetohydrodynamic waves in a non-uniform current-carrying plasma column
An effect of an axial current on the propagation of low-frequency axisymmetric magnetohydroclynamic waves in a radially non-uniform plasma column was investigated theoretically and experimentally. It was found that the axial current and the density gradient cause a coupling between the torsional and compressional wave
Chiral Dynamics of Deeply Bound Pionic Atoms
We present and discuss a systematic calculation, based on two-loop chiral
perturbation theory, of the pion-nuclear s-wave optical potential. A proper
treatment of the explicit energy dependence of the off-shell pion self-energy
together with (electromagnetic) gauge invariance of the Klein-Gordon equation
turns out to be crucial. Accurate data for the binding energies and widths of
the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and
the notorious "missing repulsion" in the pion-nuclear s-wave optical potential
is accounted for. The connection with the in-medium change of the pion decay
constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure
Multi- nuclei and kaon condensation
We extend previous relativistic mean-field (RMF) calculations of multi- nuclei, using vector boson fields with SU(3) PPV coupling constants and
scalar boson fields constrained phenomenologically. For a given core nucleus,
the resulting separation energy , as well as the
associated nuclear and -meson densities, saturate with the number
of mesons for . Saturation
appears robust against a wide range of variations, including the RMF nuclear
model used and the type of boson fields mediating the strong interactions.
Because generally does not exceed 200 MeV, it is argued that
multi- nuclei do not compete with multihyperonic nuclei in providing
the ground state of strange hadronic configurations and that kaon condensation
is unlikely to occur in strong-interaction self-bound strange hadronic matter.
Last, we explore possibly self-bound strange systems made of neutrons and
mesons, or protons and mesons, and study their properties.Comment: 21 pages, 8 figures, revised text and reference
Open-charm enhancement at FAIR?
We have calculated the D-meson spectral density at finite temperature within
a self-consistent coupled-channel approach that generates dynamically the
(2593) resonance. We find a small mass shift for the D-meson in
this hot and dense medium while the spectral density develops a sizeable width.
The reduced attraction felt by the D-meson in hot and dense matter together
with the large width observed have important consequences for the D-meson
production in the future CBM experiment at FAIR.Comment: 4 pages, 2 figures, to appear in the proceedings of 9th International
Conference on Strangeness in Quark Matter (SQM2006), Los Angeles, USA, March
26-31, 200
QCD spectral sum rules and spontaneously broken chiral symmetry
The gap Delta = 4 pi f_pi ~ 1.2 GeV of spontaneous chiral symmetry breaking is introduced as a scale delineating resonance and continuum regions in the QCD spectral sum rules for vector mesons. Basic current algebra results are easily recovered, and accurate sum rules for the lower moments of the spectral distributions are derived. The in-medium scaling of vector meson masses finds a straightforward interpretation, at least in the narrow width limit
Group Leaders Optimization Algorithm
We present a new global optimization algorithm in which the influence of the
leaders in social groups is used as an inspiration for the evolutionary
technique which is designed into a group architecture. To demonstrate the
efficiency of the method, a standard suite of single and multidimensional
optimization functions along with the energies and the geometric structures of
Lennard-Jones clusters are given as well as the application of the algorithm on
quantum circuit design problems. We show that as an improvement over previous
methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of
N-particles. In addition, an efficient circuit design is shown for two qubit
Grover search algorithm which is a quantum algorithm providing quadratic
speed-up over the classical counterpart
Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts
Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority
Entropy production by resonance decays
We investigate entropy production for an expanding system of particles and
resonances with isospin symmetry -- in our case pions and mesons --
within the framework of relativistic kinetic theory. A cascade code to simulate
the kinetic equations is developed and results for entropy production and
particle spectra are presented.Comment: 17 pages, 10 ps-figures included, only change: preprint number adde
In Solidarity
This edition of Next Page is a departure from our usual question and answer format with a featured campus reader. Instead, we asked speakers who participated in the College’s recent Student Solidarity Rally (March 1, 2017) to recommend readings that might further our understanding of the topics on which they spoke
The in-medium isovector pi N amplitude from low energy pion scattering
Differential cross sections for elastic scattering of 21.5 MeV positive and
negative pions by Si, Ca, Ni and Zr have been measured as part of a study of
the pion-nucleus potential across threshold. The `anomalous' repulsion in the
s-wave term was observed, as is the case with pionic atoms. The extra repulsion
can be accounted for by a chiral-motivated model where the pion decay constant
is modified in the medium. Unlike in pionic atoms, the anomaly cannot be
removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR
- …
