742 research outputs found
Pulmonary vasospasm in systemic sclerosis: noninvasive techniques for detection
In a subgroup of patients with systemic sclerosis (SSc), vasospasm affecting the pulmonary circulation may contribute to worsening respiratory symptoms, including dyspnea. Noninvasive assessment of pulmonary blood flow (PBF), utilizing inert-gas rebreathing (IGR) and dual-energy computed-tomography pulmonary angiography (DE-CTPA), may be useful for identifying pulmonary vasospasm. Thirty-one participants (22 SSc patients and 9 healthy volunteers) underwent PBF assessment with IGR and DE-CTPA at baseline and after provocation with a cold-air inhalation challenge (CACh). Before the study investigations, participants were assigned to subgroups: group A included SSc patients who reported increased breathlessness after exposure to cold air (n = 11), group B included SSc patients without cold-air sensitivity (n = 11), and group C patients included the healthy volunteers. Median change in PBF from baseline was compared between groups A, B, and C after CACh. Compared with groups B and C, in group A there was a significant decline in median PBF from baseline at 10 minutes (−10%; range: −52.2% to 4.0%; P < 0.01), 20 minutes (−17.4%; −27.9% to 0.0%; P < 0.01), and 30 minutes (−8.5%; −34.4% to 2.0%; P < 0.01) after CACh. There was no significant difference in median PBF change between groups B or C at any time point and no change in pulmonary perfusion on DE-CTPA. Reduction in pulmonary blood flow following CACh suggests that pulmonary vasospasm may be present in a subgroup of patients with SSc and may contribute to worsening dyspnea on exposure to cold
The influence of tethered epidermal growth factor on connective tissue progenitor colony formation
Strategies to combine aspirated marrow cells with scaffolds to treat connective tissue defects are gaining increasing clinical attention and use. In situations such as large defects where initial survival and proliferation of transplanted connective tissue progenitors (CTPs) are limiting, therapeutic outcomes might be improved by using the scaffold to deliver growth factors that promote the early stages of cell function in the graft. Signaling by the epidermal growth factor receptor (EGFR) plays a role in cell survival and has been implicated in bone development and homeostasis. Providing epidermal growth factor (EGF) in a scaffold-tethered format may sustain local delivery and shift EGFR signaling to pro-survival modes compared to soluble ligand. We therefore examined the effect of tethered EGF on osteogenic colony formation from human bone marrow aspirates in the context of three different adhesion environments using a total of 39 donors. We found that tethered EGF, but not soluble EGF, increased the numbers of colonies formed regardless of adhesion background, and that tethered EGF did not impair early stages of osteogenic differentiation.National Institute of General Medical Sciences (U.S.) (Grant NIH RO1 AR42997)National Institute of General Medical Sciences (U.S.) (Grant NIH RO1 AG024980)National Institute of General Medical Sciences (U.S.) (Grant NIH RO1 GM59870)National Institute of General Medical Sciences (U.S.) (Grant NIH DE019523
Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease
Background Fibroblastic foci profusion on histopathology and severity of traction bronchiectasis on highresolution computed tomography (HRCT) have been shown to be predictors of mortality in patients with idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the relationship between fibroblastic foci (FF) profusion and HRCT patterns in patients with a histopathologic diagnosis of usual interstitial pneumonia (UIP), fibrotic non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity pneumonitis (CHP). Methods The HRCT scans of 162 patients with a histopathologic diagnosis of UIP or fibrotic NSIP (n = 162) were scored on extent of groundglass opacification, reticulation, honeycombing, emphysema and severity of traction bronchiectasis. For each patient, a fibroblastic foci profusion score based on histopathologic appearances was assigned. Relationships between extent of fibroblastic foci and individual HRCT patterns were investigated using univariate correlation analysis and multivariate linear regression. Results Increasing extent of reticulation (P < 0.0001) and increasing severity of traction bronchiectasis (P < 0.0001) were independently associated with increasing FF score within the entire cohort. Within individual multidisciplinary team diagnosis subgroups, the only significant independent association with FF score was severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF)/UIP (n = 66, r2 = 0.19, P < 0.0001) and patients with chronic hypersensitivity pneumonitis (CHP) (n = 49, r2 = 0.45, P < 0.0001). Furthermore, FF score had the strongest association with severity of traction bronchiectasis in patients with IPF (r2 = 0.34, P < 0.0001) and CHP (r2 = 0.35, P < 0.0001). There was no correlation between FF score and severity of traction bronchiectasis in patients with fibrotic NSIP. Global disease extent had the strongest association with severity of traction bronchiectasis in patients with fibrotic NSIP (r2 = 0.58, P < 0.0001). Conclusion In patients with fibrotic lung disease, profusion of fibroblastic foci is strikingly related to the severity of traction bronchiectasis, particularly in IPF and CHP. This may explain the growing evidence that traction bronchiectasis is a predictor of mortality in several fibrotic lung diseases
A biomarker panel (Bioscore) incorporating monocytic surface and soluble TREM-1 has high discriminative value for ventilator-associated pneumonia: a prospective observational study
Ventilator-associated pneumonia (VAP) increases mortality in critical illness. However, clinical diagnostic uncertainty persists. We hypothesised that measuring cell-surface and soluble inflammatory markers, incorporating Triggering Receptor Expressed by Myeloid cells (TREM)-1, would improve diagnostic accuracy.A single centre prospective observational study, set in a University Hospital medical-surgical intensive Care unit, recruited 91 patients into 3 groups: 27 patients with VAP, 33 ventilated controls without evidence of pulmonary sepsis (non-VAP), and 31 non-ventilated controls (NVC), without clinical infection, attending for bronchoscopy. Paired samples of Bronchiolo-alveolar lavage fluid (BALF) and blood from each subject were analysed for putative biomarkers of infection: Cellular (TREM-1, CD11b and CD62L) and soluble (IL-1β, IL-6, IL-8, sTREM-1, Procalcitonin). Expression of cellular markers on monocytes and neutrophils were measured by flow cytometry. Soluble inflammatory markers were determined by ELISA. A biomarker panel ('Bioscore'), was constructed, tested and validated, using Fisher's discriminant function analysis, to assess its value in distinguishing VAP from non VAP.The expression of TREM-1 on monocytes (mTREM-1) and neutrophils (nTREM-1) and concentrations of IL-1β, IL-8, and sTREM-1 in BALF were significantly higher in VAP compared with non-VAP and NVC (p<0.001). The BALF/blood mTREM-1 was significantly higher in VAP patients compared to non-VAP and NVC (0.8 v 0.4 v 0.3 p<0.001). A seven marker Bioscore (BALF/blood ratio mTREM-1 and mCD11b, BALF sTREM-1, IL-8 and IL-1β, and serum CRP and IL-6) correctly identified 88.9% of VAP cases and 100% of non-VAP cases.A 7-marker bioscore, incorporating cellular and soluble TREM-1, accurately discriminates VAP from non-pulmonary infection
99mTc-IgG-Lung Scintigraphy in the Assessment of Pulmonary Involvement in Interstitial Lung Disease and Its Comparison With Pulmonary Function Tests and High-Resolution Computed Tomography: A Preliminary Study
Background: The discrimination of inactive inflammatory processes from the active form of the disease is of great importance in the management of interstitial lung disease (ILD).
Objectives: The aim of this study was to determine the efficacy of 99mTc-IgG scan for the detection of severity of disease compared to high-resolution computed tomography (HRCT) and pulmonary function test (PFT).
Patients and Methods: Eight known cases of ILD including four cases of Mustard gas (MG) intoxication and four patients with ILD of unknown cause were included in this study. A population of six patients without lung disease was considered as the control group. The patients underwent PFT and high-resolution computed tomography scan, followed by 99mTc-IgG scan. They were followed up for one year. 99mTc-IgG scan assessment of IgG uptake was accomplished both qualitatively (subjectively) and semiquantitatively.
Results: All eight ILD patients demonstrated a strong increase in 99mTc-IgG uptake in the lungs, compared to the control patients. The 99mTc-IgG scan scores were higher in the patient group (0.64[95% confidence interval (CI)=0.61-0.69])) than the control group (0.35 (0.35[95% CI=0.28-0.40]), (P 0.05). There were no significant correlations between 99mTc-IgG score and HRCT patterns including ground glass opacity, reticular fibrosis and honeycombing (P value > 0.05).
Conclusion: The present results confirmed that 99mTc-IgG scan could be applied to detect the severity of pulmonary involvement, which was well correlated with HRCT findings. This data also showed that the 99mTc-IgG scan might be used as a complement to HRCT in the functional evaluation of the clinical status in ILD; however, further studies are recommended
The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis
Rationale:Idiopathic pulmonaryfibrosis (IPF)isa progressivelung disease of unknown cause that leads to respiratory failure and death within 5 years of diagnosis. Overt respiratory infection and immunosuppression carry a high morbidity and mortality, and polymorphisms in genes related to epithelial integrity and host defense predispose to IPF. Objectives: To investigate the role of bacteria in the pathogenesis and progression of IPF. Methods: We prospectively enrolled patients diagnosed with IPF according to international criteria together with healthy smokers, nonsmokers, and subjectswithmoderate chronic obstructive pulmonary disease as control subjects. Subjects underwent bronchoalveolar lavage (BAL), from which genomic DNA was isolated. The V3–V5 region of the bacterial 16S rRNA gene was amplified, allowing quantification of bacterial load and identification of communities by 16S rRNA quantitative polymerase chain reaction and pyrosequencing. Measurements and Main Results: Sixty-five patients with IPF had double the burden of bacteria in BAL fluid compared with 44 control subjects. Baseline bacterial burden predicted the rate of decline in lung volume and risk of death and associated independently with the rs35705950 polymorphism of the MUC5B mucin gene, a proven host susceptibilityfactorfor IPF. Sequencing yielded912,883 high-quality reads from all subjects.WeidentifiedHaemophilus, Streptococcus,Neisseria, and Veillonella spp. to be more abundant in cases than control subjects. Regression analyses indicated that these specific operational taxonomic units as well as bacterial burden associated independently with IPF. Conclusions: IPF is characterized by an increased bacterial burden in BAL that predicts decline in lung function and death. Trials of antimicrobial therapy are needed to determine if microbial burden is pathogenic in the disease
Major lung complications of systemic sclerosis (vol 14, pg 511, 2018)
Systemic sclerosis (SSc) is associated with high mortality owing to internal organ complications and lung
disease is the leading cause of SSc-associated death. The most notable lung complications in SSc are
fibrosis and pulmonary arterial hypertension (PAH). A major challenge for the management of lung
disease in SSc is detecting those patients with severe pathology and those patients that are likely to
benefit from available treatments. In the past few, strategies for managing lung fibrosis and pulmonary
hypertension, including PAH, have greatly progressed. For lung fibrosis, the tools to assess risk of
progression and severity of the disease have been refined. Clinical trial results support the use of
immunosuppression, including high intensity regimens with autologous stem cell transplantation. New
trials are underway to test other potential therapies including treatments that are approved for use in
idiopathic lung fibrosis. For PAH, identifying individuals at high risk of disease development is critical. In
addition, individuals who have borderline elevation of pulmonary arterial pressure need to be
appropriately managed and followed up. Many approved drugs targeting PAH are now available and
results from large-scale clinical trials provide robust evidence that various treatments for SSc-associated
PAH are associated with good long-term outcomes
"Any fool can make a rule and any fool will mind it"
In principle, accurate guideline recommendations should lead to optimal management based on a secure diagnosis. However, current IPF diagnostic guidelines do not meet the needs of a major sub-group (possibly the majority) of patients with idiopathic pulmonary fibrosis (IPF). A great many IPF patients have HRCT appearances of “possible UIP”. A surgical biopsy is very often impracticable due to age, disease severity, co-morbidities or patient refusal. A guideline-based diagnosis cannot be made in these patients, although the diagnosis is often obvious. Inflexible diagnostic criteria, although essential for treatment trials, must necessarily be structured around an inflexible diagnostic algorithm. With this approach, non-standardised information (i.e. not available in all patients) must be omitted, including observed disease behaviour prior to and on treatment, findings on bronchoalveolar lavage, likelihoods in relation to age and a wealth of ancillary clinical information. However, when a diagnosis cannot be made using guideline criteria, a probable or highly probable “working diagnosis” of IPF can and should be made in most IPF patients by means of clinical reasoning, integrating all available non-standardised information
Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials
Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field
Breath biomarkers in idiopathic pulmonary fibrosis:A systematic review 11 Medical and Health Sciences
Background: Exhaled biomarkers may be related to disease processes in idiopathic pulmonary fibrosis (IPF) however their clinical role remains unclear. We performed a systematic review to investigate whether breath biomarkers discriminate between patients with IPF and healthy controls. We also assessed correlation with lung function, ability to distinguish diagnostic subgroups and change in response to treatment. Methods: MEDLINE, EMBASE and Web of Science databases were searched. Study selection was limited to adults with a diagnosis of IPF as per international guidelines. Results: Of 1014 studies screened, fourteen fulfilled selection criteria and included 257 IPF patients. Twenty individual biomarkers discriminated between IPF and controls and four showed correlation with lung function. Meta-analysis of three studies indicated mean (± SD) alveolar nitric oxide (CalvNO) levels were significantly higher in IPF (8.5 ± 5.5 ppb) than controls (4.4 ± 2.2 ppb). Markers of oxidative stress in exhaled breath condensate, such as hydrogen peroxide and 8-isoprostane, were also discriminatory. Two breathomic studies have isolated discriminative compounds using mass spectrometry. There was a lack of studies assessing relevant treatment and none assessed differences in diagnostic subgroups. Conclusions: Evidence suggests CalvNO is higher in IPF, although studies were limited by small sample size. Further breathomic work may identify biomarkers with diagnostic and prognostic potential
- …
