374 research outputs found
Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin
Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA
Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis?
Individualising biologic disease-modifying anti-rheumatic drugs (bDMARDs) to maximise outcomes and deliver safe and cost-effective care is a key goal in the management of rheumatoid arthritis (RA). Investigation to identify predictive tools of bDMARD response is a highly active and prolific area of research. In addition to clinical phenotyping, cellular and molecular characterisation of synovial tissue and blood in patients with RA, using different technologies, can facilitate predictive testing. This narrative review will summarise the literature for the available bDMARD classes and focus on where progress has been made. We will also look ahead and consider the increasing use of ‘omics’ technologies, the potential they hold as well as the challenges, and what is needed in the future to fully realise our ambition of personalised bDMARD treatment
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Rheumatoid Arthritis is an Autoimmune Disease Triggered by Proteus Urinary Tract Infection
Rheumatoid arthritis (RA) is a chronic and disabling polyarthritic disease, which affects mainly women in middle and old age
The Dynamic Processing of CD46 Intracellular Domains Provides a Molecular Rheostat for T Cell Activation
Adequate termination of an immune response is as important as the induction of an appropriate response. CD46, a regulator of complement activity, promotes T cell activation and differentiation towards a regulatory Tr1 phenotype. This Tr1 differentiation pathway is defective in patients with MS, asthma and rheumatoid arthritis, underlying its importance in controlling T cell function and the need to understand its regulatory mechanisms. CD46 has two cytoplasmic tails, Cyt1 and Cyt2, derived from alternative splicing, which are co-expressed in all nucleated human cells. The regulation of their expression and precise functions in regulating human T cell activation has not been fully elucidated.Here, we first report the novel role of CD46 in terminating T cell activation. Second, we demonstrate that its functions as an activator and inhibitor of T cell responses are mediated through the temporal processing of its cytoplasmic tails. Cyt1 processing is required to turn T cell activation on, while processing of Cyt2 switches T cell activation off, as demonstrated by proliferation, CD25 expression and cytokine secretion. Both tails require processing by Presenilin/γSecretase (P/γS) to exert these functions. This was confirmed by expressing wild-type Cyt1 and Cyt2 tails and uncleavable mutant tails in primary T cells. The role of CD46 tails was also demonstrated with T cells expressing CD19 ectodomain-CD46 C-Terminal Fragment (CTF) fusions, which allowed specific triggering of each tail individually.We conclude that CD46 acts as a molecular rheostat to control human T cell activation through the regulation of processing of its cytoplasmic tails
1 不安定狭心症におけるCD4+T細胞のかかわり : T細胞による内皮細胞障害の可能性(III.テーマ演題2) (第233回新潟循環器談話会)
departmental bulletin pape
The correct prednisone starting dose in polymyalgia rheumatica is related to body weight but not to disease severity
<p>Abstract</p> <p>Background</p> <p>the mainstay of treatment of polymyalgia rheumatica (PMR) is oral glucocorticoids, but randomized controlled trials of treatment are lacking. As a result, there is no evidence from controlled studies on the efficacy of different initial doses or glucocorticoid tapering. The aim of this study is to test if 12.5 mg prednisone/day is an adequate starting dose in PMR and to evaluate clinical predictors of drug response.</p> <p>Methods</p> <p>60 consecutive PMR patients were treated with a starting dose of 12,5 mg/day prednisone. Clinical, laboratory, and, in a subset of 25 patients, ultrasonographic features were recorded as possible predictors of response to prednisone. Remission was defined as disappearance of at least 75% of the signs and symptoms of PMR and normalization of ESR and CRP within the first month, a scenario allowing steroid tapering.</p> <p>Results</p> <p>47/60 (78.3%) patients responded to 12.5 mg of prednisone after a mean interval of 6.6 ± 5.2 days. In univariate analysis, body weight and gender discriminated the two groups. In multivariate analysis, the only factor predicting a good response was low weight (p = 0.004); the higher response rate observed in women was explained by their lower weight. The mean prednisone dose per kg in the responders was 0.19 ± 0.03 mg in comparison with 0.16 ± 0.03 mg for non responders (p = 0.007).</p> <p>Conclusions</p> <p>12.5 mg prednisone is a sufficient starting dose in ¾ of PMR patients. The main factor driving response to prednisone in PMR was weight, a finding that could help in the clinical care of PMR patients and in designing prospective studies of treatment.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01169597">NCT01169597</a></p
TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis
BACKGROUND: Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development.
METHODS: The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis.
RESULTS: While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores.
CONCLUSIONS: Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis
Associations of HLA DR and DQ molecules with Lyme borreliosis in Latvian patients
Copyright: Copyright 2012 Elsevier B.V., All rights reserved.Background: Many autoimmune diseases are associated with variants of HLA genes such as those encoding the MHC complex. This correlation is not absolute, but may help in understanding of the molecular mechanism of disease. The purpose of this study was to determine HLA-DR,-DQ alleles in Latvian patients with Lyme borreliosis and control (healthy) persons. Case patients and control subjects were similar in age, gender and ethnic heritage and differed only as regards the presence of Borrelia burgdorferi infection. The study included 25 patients with clinical stage - erythema migrans and 30 control (healthy) persons. HLA genotyping was performed by PCR with sequence-specific primers. Results: The results show difference in HLA-DRB1 alleles distribution between patients and control subjects. The frequencies of HLA-DRB1 *04 (OR 11.24; p<0.007) and HLA-DRB1 *17 (03) (OR 8.05; p<0.033) were increased in the Lyme disease patients. And the frequency of allele DRB1*13 (OR 0.12; p<0.017) was lower in Borreliosis patients and higher in control group. But, significant differences in frequencies of HLA-DQ alleles we did not detect. Conclusions: HLA predisposition to Lyme borreliosis appears not to be limited to HLA molecules, but some HLA-DR alleles also have a significant influence, and, may have implications in our understanding of pathogenesis of this disease. In particular, HLA-DRB1*04 and DRB1 *17 (03) may contribute to the Lyme borreliosis development in Latvian population.publishersversionPeer reviewe
- …
