42 research outputs found
Development of Resistance towards Artesunate in MDA-MB-231 Human Breast Cancer Cells
Breast cancer is the most common cancer and the second leading cause of cancer death in industrialized countries. Systemic treatment of breast cancer is effective at the beginning of therapy. However, after a variable period of time, progression occurs due to therapy resistance. Artesunate, clinically used as anti-malarial agent, has recently revealed remarkable anti-tumor activity offering a role as novel candidate for cancer chemotherapy. We analyzed the anti-tumor effects of artesunate in metastasizing breast carcinoma in vitro and in vivo. Unlike as expected, artesunate induced resistance in highly metastatic human breast cancer cells MDA-MB-231. Likewise acquired resistance led to abolishment of apoptosis and cytotoxicity in pre-treated MDA-MB-231 cells. In contrast, artesunate was more cytotoxic towards the less tumorigenic MDA-MB-468 cells without showing resistance. Unraveling the underlying molecular mechanisms, we found that resistance was induced due to activation of the tumor progression related transcription factors NFκB and AP-1. Thereby transcription, expression and activity of the matrix-degrading enzyme MMP-1, whose function is correlated with increased invasion and metastasis, was up-regulated upon acquisition of resistance. Additionally, activation of the apoptosis-related factor NFκB lead to increased expression of ant-apoptotic bcl2 and reduced expression of pro-apoptotic bax. Application of artesunate in vivo in a model of xenografted breast cancer showed, that tumors growth was not efficiently abolished as compared to the control drug doxorubicin. Taken together our in vitro and in vivo results correlate well showing for the first time that artesunate induces resistance in highly metastatic breast tumors
45S rDNA Regions Are Chromosome Fragile Sites Expressed as Gaps In Vitro on Metaphase Chromosomes of Root-Tip Meristematic Cells in Lolium spp
BACKGROUND: In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS: During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS: The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed
Morphological changes and parasite load of the adrenal from dogs with visceral leishmaniasis
The objective of this study was to analyze morphological changes and parasite loads in the adrenal gland from 45 dogs with visceral leishmaniasis (VL). The animals were from the Zoonosis Control Center of Aracatuba, state of Sao Paulo, which is an endemic region for the disease. These animals were euthanized due to positive diagnoses of VL. The dogs were classified into asymptomatic, oligosymptomatic and symptomatic groups. The parasite load was determined by immunohistochemistry, using VL-positive dog hyperimmune serum. Nine dogs showed an inflammatory infiltrate composed, predominantly, of plasma cells and macrophages. However, only eight dogs showed macrophages with amastigote forms of the parasite, immunolabeled in the cytoplasm. The medullary and reticular layers were the most affected areas, possibly due to a favorable microenvironment created by hormones in these regions. The density of parasites in the glandular tissue was not associated with clinical signs of VL (P > 0.05). However, the presence of the parasite was always associated with the presence of a granulomatous inflammatory infiltrate. This gland may not be an ideal place for the parasite's multiplication, but the presence of injuries to the glandular tissue could influence the dog's immune system, thus favoring the parasite's survival in the host's different organs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, FCAV, Dept Patol Vet, BR-14884900 Jaboticabal, SP, BrazilUniv Estadual Paulista, FMVA, Dept Apoio Prod & Saude Anim, Aracatuba, SP, BrazilUniv Estadual Paulista, FCAV, Dept Ciencias Exatas, BR-14884900 Jaboticabal, SP, BrazilUniv Estadual Paulista, FCAV, Dept Patol Vet, BR-14884900 Jaboticabal, SP, BrazilUniv Estadual Paulista, FMVA, Dept Apoio Prod & Saude Anim, Aracatuba, SP, BrazilUniv Estadual Paulista, FCAV, Dept Ciencias Exatas, BR-14884900 Jaboticabal, SP, BrazilFAPESP: 09/07815-4FAPESP: 09/15736-7FAPESP: 07/01457-
