1,224 research outputs found
Optic flow information influencing heading perception during rotation
Poster Session - Perception and Action: abstract no. 22.34We investigated what roles global spatial frequency, surface structure, and foreground motion play in heading perception during simulated rotation from optic flow. The display …postprin
Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups
Genetic noise control via protein oligomerization
Gene expression in a cell entails random reaction events occurring over
disparate time scales. Thus, molecular noise that often results in phenotypic
and population-dynamic consequences sets a fundamental limit to biochemical
signaling. While there have been numerous studies correlating the architecture
of cellular reaction networks with noise tolerance, only a limited effort has
been made to understand the dynamic role of protein-protein interactions. Here
we have developed a fully stochastic model for the positive feedback control of
a single gene, as well as a pair of genes (toggle switch), integrating
quantitative results from previous in vivo and in vitro studies. We find that
the overall noise-level is reduced and the frequency content of the noise is
dramatically shifted to the physiologically irrelevant high-frequency regime in
the presence of protein dimerization. This is independent of the choice of
monomer or dimer as transcription factor and persists throughout the multiple
model topologies considered. For the toggle switch, we additionally find that
the presence of a protein dimer, either homodimer or heterodimer, may
significantly reduce its random switching rate. Hence, the dimer promotes the
robust function of bistable switches by preventing the uninduced (induced)
state from randomly being induced (uninduced). The specific binding between
regulatory proteins provides a buffer that may prevent the propagation of
fluctuations in genetic activity. The capacity of the buffer is a non-monotonic
function of association-dissociation rates. Since the protein oligomerization
per se does not require extra protein components to be expressed, it provides a
basis for the rapid control of intrinsic or extrinsic noise
Postural instability in an immersive Virtual Reality adapts with repetition and includes directional and gender specific effects
The ability to handle sensory conflicts and use the most appropriate sensory information is vital for successful recovery of human postural control after injury. The objective was to determine if virtual reality (VR) could provide a vehicle for sensory training, and determine the temporal and spatial nature of such adaptive changes. Twenty healthy subjects participated in the study (10 females). The subjects watched a 90-second VR simulation of railroad (rollercoaster) motion in mountainous terrain during five repeated simulations, while standing on a force platform that recorded their stability. The immediate response to watching the VR movie was an increased level of postural instability. Repeatedly watching the same VR movie significantly reduced both the anteroposterior (62%, p < 0.001) and lateral (47%, p = 0.001) energy used. However, females adapted more slowly to the VR stimuli as reflected by higher use of total (p = 0.007), low frequency (p = 0.027) and high frequency (p = 0.026) energy. Healthy subjects can significantly adapt to a multidirectional, provocative, visual environment after 4–5 repeated sessions of VR. Consequently, VR technology might be an effective tool for rehabilitation involving visual desensitisation. However, some females may require more training sessions to achieve effects with VR
Recommended from our members
Pointing errors in non-metric virtual environments
There have been suggestions that human navigation may depend on representations that have no metric, Euclidean interpretation but that hypothesis remains contentious. An alternative is that observers build a consistent 3D representation of space. Using immersive virtual reality, we measured the ability of observers to point to targets in mazes that had zero, one or three ‘wormholes’ – regions where the maze changed in configuration (invisibly). In one model, we allowed the configuration of the maze to vary to best explain the pointing data; in a second model we also allowed the local reference frame to be rotated through 90, 180 or 270 degrees. The latter model outperformed the former in the wormhole conditions, inconsistent with a Euclidean cognitive map
Beyond in-phase and anti-phase coordination in a model of joint action
In 1985, Haken, Kelso and Bunz proposed a system of coupled nonlinear oscillators as a model of rhythmic movement patterns in human bimanual coordination. Since then, the Haken–Kelso–Bunz (HKB) model has become a modelling paradigm applied extensively in all areas of movement science, including interpersonal motor coordination. However, all previous studies have followed a line of analysis based on slowly varying amplitudes and rotating wave approximations. These approximations lead to a reduced system, consisting of a single differential equation representing the evolution of the relative phase of the two coupled oscillators: the HKB model of the relative phase. Here we take a different approach and systematically investigate the behaviour of the HKB model in the full four-dimensional state space and for general coupling strengths. We perform detailed numerical bifurcation analyses and reveal that the HKB model supports previously unreported dynamical regimes as well as bistability between a variety of coordination patterns. Furthermore, we identify the stability boundaries of distinct coordination regimes in the model and discuss the applicability of our findings to interpersonal coordination and other joint action tasks
Bumblebees display characteristics of active vision during robust obstacle avoidance flight
Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments
Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert
The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East– West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.Web of Scienc
Female leadership in French voluntary associations
Drawing on a recent national survey, this paper focuses on the female representation on executive committees in French voluntary associations. To begin with, we observe that this representation is very unequal according to the different officer positions. It is especially low among presidents. Then we study the relationship between the associations' attributes and the likelihood of women being appointed as executive committee members. We notice that the probabilities that women hold president, treasurer and secretary positions are highly correlated to each other. We find that the proportion of female officers is higher in organizations whose activities pertain to social service, health and humanitarian sectors. It is lower in the oldest associations and it decreases as their geographical area of activity increases and as their budget becomes larger. The probability that associations have female presidents is higher in associations with few volunteers
Sensory substitution information informs locomotor adjustments when walking through apertures
The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0%, +18%, +35%, and +70% of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35% for apertures of +18% of body width), suggests that spatial representations are not as accurate as offered by full vision
- …
