29 research outputs found
The Madden–Julian oscillation wind-convection coupling and the role of moisture processes in the MM5 model
What can whiskers tell us about mammalian evolution, behaviour, and ecology?
Most mammals have whiskers; however, nearly everything we know about whiskers derives from just a handful of species, including laboratory rats Rattus norvegicus and mice Mus musculus, as well as some species of pinniped and marsupial. We explore the extent to which the knowledge of the whisker system from a handful of species applies to mammals generally. This will help us understand whisker evolution and function, in order to gain more insights into mammalian behaviour and ecology. This review is structured around Tinbergen’s four questions, since this method is an established, comprehensive, and logical approach to studying behaviour. We ask: how do whiskers work, develop, and evolve? And what are they for? While whiskers are all slender, curved, tapered, keratinised hairs that transmit vibrotactile information, we show that there are marked differences between species with respect to whisker arrangement, numbers, length, musculature, development, and growth cycles. The conservation of form and a common muscle architecture in mammals suggests that early mammals had whiskers. Whiskers may have been functional even in therapsids. However, certain extant mammalian species are equipped with especially long and sensitive whiskers, in particular nocturnal, arboreal species, and aquatic species, which live in complex environments and hunt moving prey. Knowledge of whiskers and whisker use can guide us in developing conservation protocols and designing enriched enclosures for captive mammals. We suggest that further comparative studies, embracing a wider variety of mammalian species, are required before one can make large-scale predictions relating to evolution and function of whiskers. More research is needed to develop robust techniques to enhance the welfare and conservation of mammals
Reconciling Differences Between Large-Eddy Simulations and Doppler Lidar Observations of Continental Shallow Cumulus Cloud-Base Vertical Velocity
©2019. American Geophysical Union. All Rights Reserved. We investigate a significant model-observation difference found between cloud-base vertical velocity for continental shallow cumulus simulated using large-eddy simulations (LES) and observed by Doppler lidar measurements over the U.S. Southern Great Plains Atmospheric Radiation Measurement Facility. The LES cloud-base vertical velocity is dominated by updrafts that are consistent with a general picture for convective clouds but is inconsistent with Doppler lidar observations that also show the presence of considerable downdrafts. The underestimation of simulated downdrafts is found to be a robust feature, being insensitive to various numerical, physical, or dynamical choices. We find that simulations can more closely reproduce observations only after improving the model physics to use size-resolved microphysics and horizontal longwave radiation, both of which modify the cloud buoyancy and velocity structure near cloud side edges. The results suggest that treatments that capture these structures are needed for the proper simulation and subsequent parameterization development of shallow cumulus vertical transport
Recommended from our members
Reconciling Differences Between Large-Eddy Simulations and Doppler Lidar Observations of Continental Shallow Cumulus Cloud-Base Vertical Velocity
We investigate a significant model-observation difference found between cloud-base vertical velocity for continental shallow cumulus simulated using large-eddy simulations (LES) and observed by Doppler lidar measurements over the U.S. Southern Great Plains Atmospheric Radiation Measurement Facility. The LES cloud-base vertical velocity is dominated by updrafts that are consistent with a general picture for convective clouds but is inconsistent with Doppler lidar observations that also show the presence of considerable downdrafts. The underestimation of simulated downdrafts is found to be a robust feature, being insensitive to various numerical, physical, or dynamical choices. We find that simulations can more closely reproduce observations only after improving the model physics to use size-resolved microphysics and horizontal longwave radiation, both of which modify the cloud buoyancy and velocity structure near cloud side edges. The results suggest that treatments that capture these structures are needed for the proper simulation and subsequent parameterization development of shallow cumulus vertical transport
Mineralogy and origin of coarse-grained segregations in the pyrometallurgical Zn-Pb slags from Katowice-Wełnowiec (Poland)
The unique among pyrometallurgical slags, coarse-grained (up to 2.5 cm) segregations (up to 40 cm long) rimmed by “aplitic” border zones occur within holocrystalline historical Zn-smelting slag in Katowice, S Poland. Slag surrounding the segregations consists of olivine, spinel series, melilite, clinopyroxene, leucite, nepheline and sulphides. Ca-olivines, kalsilite and mica compositionally similar to oxykinoshitalite occur in border zones in addition to olivine, spinel series and melilite. Miarolitic and massive pegmatite-like segregations are built of subhedral crystals of melilite, leucite, spinel series, clinopyroxene and hematite. Melilite, clinopyroxenes and spinels in the segregations are enriched in Zn relatively to original slag and to fine-grained border zones. The segregations originated as a result of crystallization from residual melt rich in volatiles (presumably CO2). The volatile-rich melt was separated during fractional crystallization of molten slag under the cover of the overlying hot (ca. 1250 °C) vesicular slag, preventing the escape of volatiles. That unique slag system is analogous to natural magmatic systems
