554 research outputs found
Proximate factors underpinning receiver responses to deceptive false alarm calls in wild tufted capuchin monkeys: is it counterdeception?
Previous research demonstrates that tufted capuchin monkeys use terrestrial predator alarm calls in a functionally deceptive manner to distract conspecifics when feeding on contestable resources, although the success of this tactic is limited because listeners frequently ignore these calls when given in such situations. While this decreased response rate is suggestive of a counterstrategy to deception by receivers, the proximate factors underpinning the behavior are unclear. The current study aims to test if the decreased response rate to alarm calls in competitive contexts is better explained by the perception of subtle acoustic differences between predator-elicited and deceptive false alarms, or by receivers varying their responses based on the context in which the signal is received. This was tested by first examining the acoustic structure of predator-elicited and deceptive false alarms for any potentially perceptible acoustic differences, and second by comparing the responses of capuchins to playbacks of each of predator-elicited and false alarms, played back in noncompetitive contexts. The results indicate that deceptive false alarms and predator-elicited alarms show, at best, minimal acoustic differences based on the structural features measured. Likewise, playbacks of deceptive false alarms elicited antipredator reactions at the same rate as did predator-elicited alarms, although there was a nonsignificant tendency for false alarms to be more likely to elicit escape reactions. The lack of robust acoustic differences together with the high response rate to false alarms in noncompetitive contexts suggests that the context in which the signal is received best explains receiver responses. It remains unclear, however, if listeners ascribe different meanings to the calls based on context, or if they generally ignore all signals in competitive contexts. Whether or not the decreased response rate of receivers directly stems from the deceptive use of the calls cannot be determined until these latter possibilities are rigorously tested
Visualizing sound emission of elephant vocalizations: evidence for two rumble production types
Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'
Observations of mixed-species bird flocks at Kichwa Tembo Camp, Kenya
Mixed-species foraging flocks were studied at Kichwa Tembo Camp on the edge of the Masai Mara National Reserve in Kenya between July and September 2004. Observations were made on 29 mixed-species flocks, in which 24 species participated. African Paradise-Flycatcher Terpsiphone viridis, Black-backed Puffback Dryoscopus cubla, Grey-backed Camaroptera Camaroptera brachyura, Collared Sunbird Hedydipna collars and Cabanis's Greenbul Phyllastrephus cabanisi were the most common participants in mixed-species flocks, as well as among the most frequently encountered bird species overall. The Black-backed Puffback was identified as the nuclear species in flocks due to their abundance and frequency with which they were followed by other species. Mixed-species flocks represent another niche dimension in this diverse bird community, but few of these species could be described as flock specialists; most of the birds observed in mixed-species flocks in this study were opportunistic attendant species, including the African Pygmy-Kingfisher Ispidina picta, not previously described as joining mixed-species flocks
Decrease in alarm call response among tufted capuchins in competitive feeding contexts: possible evidence for counterdeception
Animal signals function to elicit behaviors in receivers that ultimately benefit the signaler, while receivers should respond in a way that maximizes their own fitness. However, the best response may be difficult for receivers to determine when unreliable signaling is common. “Deceptive” alarm calling is common among tufted capuchins (Cebus apella nigritus) in competitive feeding contexts, and responding to these calls is costly. Receivers should thus vary their responses based on whether a call is likely to be reliable. If capuchins are indeed able to assess reliability, I predicted that receivers will be less likely to respond to alarms that are given during competitive feeding contexts than in noncompetitive contexts, and, within feeding contexts, that individuals inside or adjacent to a food patch will be less likely to respond to alarms than those further from the resource. I tested these predictions in a group of wild capuchins by observing the reactions of focal animals to alarm calls in both noncompetitive contexts and experimental feeding contexts. Antipredator escape reactions, but not vigilance reactions, occurred significantly less often in competitive feeding contexts than in noncompetitive contexts and individuals adjacent to food patches were more likely to respond to alarm calls than were those inside or further from food patches. Although not all predictions were fully supported, the findings demonstrate that receivers vary their behavior in a way that minimizes the costs associated with “deceptive” alarms, but further research is needed to determine whether or not this can be attributed to counterdeception
Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial
IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved
Vocal plasticity in a reptile
Sophisticated vocal communication systems of birds and mammals, including human speech, are characterized by a high degree of plasticity in which signals are individually adjusted in response to changes in the environment. Here, we present, to our knowledge, the first evidence for vocal plasticity in a reptile. Like birds and mammals, tokay geckos (Gekko gecko) increased the duration of brief call notes in the presence of broadcast noise compared to quiet conditions, a behaviour that facilitates signal detection by receivers. By contrast, they did not adjust the amplitudes of their call syllables in noise (the Lombard effect), which is in line with the hypothesis that the Lombard effect has evolved independently in birds and mammals. However, the geckos used a different strategy to increase signal-to-noise ratios: instead of increasing the amplitude of a given call type when exposed to noise, the subjects produced more high-amplitude syllable types from their repertoire. Our findings demonstrate that reptile vocalizations are much more flexible than previously thought, including elaborate vocal plasticity that is also important for the complex signalling systems of birds and mammals. We suggest that signal detection constraints are one of the major forces driving the evolution of animal communication systems across different taxa
The evolution of acoustic size exaggeration in terrestrial mammals
Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator, and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production
Old lineage on an old island : Pixibinthus, a new cricket genus endemic to New Caledonia shed light on gryllid diversification in a hotspot of biodiversity
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named 'maquis minier', unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of 'maquis minier', in order to better understand the origin and past dynamics of New Caledonian biota
The Signaller's Dilemma: A Cost–Benefit Analysis of Public and Private Communication
Understanding the diversity of animal signals requires knowledge of factors which may influence the different stages of communication, from the production of a signal by the sender up to the detection, identification and final decision-making in the receiver. Yet, many studies on signalling systems focus exclusively on the sender, and often ignore the receiver side and the ecological conditions under which signals evolve.We study a neotropical katydid which uses airborne sound for long distance communication, but also an alternative form of private signalling through substrate vibration. We quantified the strength of predation by bats which eavesdrop on the airborne sound signal, by analysing insect remains at roosts of a bat family. Males do not arbitrarily use one or the other channel for communication, but spend more time with private signalling under full moon conditions, when the nocturnal rainforest favours predation by visually hunting predators. Measurements of metabolic CO(2)-production rate indicate that the energy necessary for signalling increases 3-fold in full moon nights when private signalling is favoured. The background noise level for the airborne sound channel can amount to 70 dB SPL, whereas it is low in the vibration channel in the low frequency range of the vibration signal. The active space of the airborne sound signal varies between 22 and 35 meters, contrasting with about 4 meters with the vibration signal transmitted on the insect's favourite roost plant. Signal perception was studied using neurophysiological methods under outdoor conditions, which is more reliable for the private mode of communication.Our results demonstrate the complex effects of ecological conditions, such as predation, nocturnal ambient light levels, and masking noise levels on the performance of receivers in detecting mating signals, and that the net advantage or disadvantage of a mode of communication strongly depends on these conditions
Communication in the Third Dimension: Song Perch Height of Rivals Affects Singing Response in Nightingales
Many animals use long-range signals to compete over mates and resources. Optimal transmission can be achieved by choosing efficient signals, or by choosing adequate signalling perches and song posts. High signalling perches benefit sound transmission and reception, but may be more risky due to exposure to airborne predators. Perch height could thus reflect male quality, with individuals signalling at higher perches appearing as more threatening to rivals. Using playbacks on nightingales (Luscinia megarhynchos), we simulated rivals singing at the same height as residents, or singing three metres higher. Surprisingly, residents increased song output stronger, and, varying with future pairing success, overlapped more songs of the playback when rivals were singing at the same height than when they were singing higher. Other than expected, rivals singing at the same height may thus be experienced as more threatening than rivals singing at higher perches. Our study provides new evidence that territorial animals integrate information on signalling height and thus on vertical cues in their assessment of rivals
- …
