3,400 research outputs found
Assessment of the impact of aquatic resources research by ICLARM: scope and methodologies
The importance of quantifying the economic returns to investments in aquatic resources research together with the social, environmental and institutional impacts of such investments is widely recognized among ICLARM's donors, trustees and beneficiaries. As with other Consultative Group on International Agricultural Research (CGIAR) centers, ICLARM is being asked to provide specific accounts of the outputs of its research and their impact on farms and on fisheries, including their socioeconomic impact. Such impact information has become a necessary, though not sufficient, basis for setting priorities and allocating resources for research for the CGIAR centers. This paper discusses the types and methods of impact assessment relevant to ICLARM's work. A three-pronged assessment approach is envisaged to capture the full range of impacts: 1) ex ante assessment for research priority setting; 2) assessment prior to dissemination or adoption along with monitoring and evaluation; and 3) ex post impact assessment. It also discusses the objectives and scope for operational impact assessment of ICLARM's research
Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism
The rise of quantum information theory has lent new relevance to experimental
tests for non-classicality, particularly in controversial cases such as
adiabatic quantum computing superconducting circuits. The Leggett-Garg
inequality is a "Bell inequality in time" designed to indicate whether a single
quantum system behaves in a macrorealistic fashion. Unfortunately, a violation
of the inequality can only show that the system is either (i)
non-macrorealistic or (ii) macrorealistic but subjected to a measurement
technique that happens to disturb the system. The "clumsiness" loophole (ii)
provides reliable refuge for the stubborn macrorealist, who can invoke it to
brand recent experimental and theoretical work on the Leggett-Garg test
inconclusive. Here, we present a revised Leggett-Garg protocol that permits one
to conclude that a system is either (i) non-macrorealistic or (ii)
macrorealistic but with the property that two seemingly non-invasive
measurements can somehow collude and strongly disturb the system. By providing
an explicit check of the invasiveness of the measurements, the protocol
replaces the clumsiness loophole with a significantly smaller "collusion"
loophole.Comment: 7 pages, 3 figure
H2 in the interstitial channels of nanotube bundles
The equation of state of H2 adsorbed in the interstitial channels of a carbon
nanotube bundle has been calculated using the diffusion Monte Carlo method. The
possibility of a lattice dilation, induced by H2 adsorption, has been analyzed
by modeling the cohesion energy of the bundle. The influence of factors like
the interatomic potentials, the nanotube radius and the geometry of the channel
on the bundle swelling is systematically analyzed. The most critical input is
proved to be the C-H2 potential. Using the same model than in planar graphite,
which is expected to be also accurate in nanotubes, the dilation is observed to
be smaller than in previous estimations or even inexistent. H2 is highly
unidimensional near the equilibrium density, the radial degree of freedom
appearing progressively at higher densities.Comment: Accepted for publication in PR
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes
Due to its large surface area and strongly attractive potential, a bundle of
carbon nanotubes is an ideal substrate material for gas storage. In addition,
adsorption in nanotubes can be exploited in order to separate the components of
a mixture. In this paper, we investigate the preferential adsorption of D_2
versus H_2(isotope selectivity) and of ortho versus para(spin selectivity)
molecules confined in the one-dimensional grooves and interstitial channels of
carbon nanotube bundles. We perform selectivity calculations in the low
coverage regime, neglecting interactions between adsorbate molecules. We find
substantial spin selectivity for a range of temperatures up to 100 K, and even
greater isotope selectivity for an extended range of temperatures,up to 300 K.
This isotope selectivity is consistent with recent experimental data, which
exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed
in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
"Forbidden" transitions between quantum Hall and insulating phases in p-SiGe heterostructures
We show that in dilute metallic p-SiGe heterostructures, magnetic field can
cause multiple quantum Hall-insulator-quantum Hall transitions. The insulating
states are observed between quantum Hall states with filling factors \nu=1 and
2 and, for the first time, between \nu=2 and 3 and between \nu=4 and 6. The
latter are in contradiction with the original global phase diagram for the
quantum Hall effect. We suggest that the application of a (perpendicular)
magnetic field induces insulating behavior in metallic p-SiGe heterostructures
in the same way as in Si MOSFETs. This insulator is then in competition with,
and interrupted by, integer quantum Hall states leading to the multiple
re-entrant transitions. The phase diagram which accounts for these transition
is similar to that previously obtained in Si MOSFETs thus confirming its
universal character
The fitness burden imposed by synthesising quorum sensing signals
It is now well established that bacterial populations utilize cell-to-cell signaling (quorum-sensing, QS) to control the production of public goods and other co-operative behaviours. Evolutionary theory predicts that both the cost of signal production and the response to signals should incur fitness costs for producing cells. Although costs imposed by the downstream consequences of QS have been shown, the cost of QS signal molecule (QSSM) production and its impact on fitness has not been examined. We measured the fitness cost to cells of synthesising QSSMs by quantifying metabolite levels in the presence of QSSM synthases. We found that: (i) bacteria making certain QSSMs have a growth defect that exerts an evolutionary cost, (ii) production of QSSMs negatively correlates with intracellular concentrations of QSSM precursors, (iii) the production of heterologous QSSMs negatively impacts the production of a native QSSM that shares common substrates, and (iv) supplementation with exogenously added metabolites partially rescued growth defects imposed by QSSM synthesis. These data identify the sources of the fitness costs incurred by QSSM producer cells, and indicate that there may be metabolic trade-offs associated with QS signaling that could exert selection on how signaling evolves
Synergistic Zinc(II) and Formate Doping of Perovskites: Thermal Phase Stabilization of α-FAPbI<sub>3</sub> and Enhanced Photoluminescence Lifetime of FA<sub>0.8</sub>MA<sub>0.2</sub>PbI<sub>3</sub> up to 3.7 µs
Adding zinc (II) cations and formate anions improves the thermal phase stability of α-FAPbI3 materials, and the spin-coated thin films of such doped FAPbI3 (produced using MACl) show an increased emission lifetime of up to 3.7 μs on quartz (for FA0.8MA0.2PbI3). This work investigates the effects of zinc and formate on the phase stability and time-resolved photoluminescence of FAPbI3 perovskites for solar cell applications. Perovskite samples with varying concentrations of zinc and formate were made by incorporating different amounts of zinc formate and zinc iodide and were characterized with XRD. Doping levels of 1.7% Zn(II) and 1.0% formate (relative to Pb) seem optimal. The thermal phase stability of the doped perovskite powders (FAPbI3) and thin films (FA0.8MA0.2PbI3) was assessed. XRD of the thin films after 6 months shows only the alpha-phase. The time-resolved photoluminescence spectroscopy of the doped spin-coated perovskite samples (FA0.8MA0.2PbI3 produced using MACl) is reported. The results show that synergy between an anionic and a cationic dopant can take place, making the perovskite thermally more phase-stable (not converting to the yellow delta-phase) with a longer charge carrier lifetime. In order to produce good thin films by spin coating, the use of MACl was essential
Hadronic Cross-sections in two photon Processes at a Future Linear Collider
In this note we address the issue of measurability of the hadronic
cross-sections at a future photon collider as well as for the two-photon
processes at a future high energy linear collider. We extend, to
higher energy, our previous estimates of the accuracy with which the \gamgam\
cross-section needs to be measured, in order to distinguish between different
theoretical models of energy dependence of the total cross-sections. We show
that the necessary precision to discriminate among these models is indeed
possible at future linear colliders in the Photon Collider option. Further we
note that even in the option a measurement of the hadron production
cross-section via \gamgam processes, with an accuracy necessary to allow
discrimination between different theoretical models, should be possible. We
also comment briefly on the implications of these predictions for hadronic
backgrounds at the future TeV energy collider CLIC.Comment: 20 pages, 5 figures, LaTeX. Added an acknowledgemen
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this first part, we present the results of the
pion-induced reactions and the extracted resonance and background properties
with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
- …
