17,167 research outputs found
Radio-wave propagation in the non-Gaussian interstellar medium
Radio waves propagating from distant pulsars in the interstellar medium
(ISM), are refracted by electron density inhomogeneities, so that the intensity
of observed pulses fluctuates with time. The theory relating the observed pulse
time-shapes to the electron-density correlation function has developed for 30
years, however, two puzzles have remained. First, observational scaling of
pulse broadening with the pulsar distance is anomalously strong; it is
consistent with the standard model only when non-uniform statistics of electron
fluctuations along the line of sight are assumed. Second, the observed pulse
shapes are consistent with the standard model only when the scattering material
is concentrated in a narrow slab between the pulsar and the Earth.
We propose that both paradoxes are resolved at once if one assumes stationary
and uniform, but non-Gaussian statistics of the electron-density distribution.
Such statistics must be of Levy type, and the propagating ray should exhibit a
Levy flight. We propose that a natural realization of such statistics may be
provided by the interstellar medium with random electron-density
discontinuities. We develop a theory of wave propagation in such a non-Gaussian
random medium, and demonstrate its good agreement with observations. The
qualitative introduction of the approach and the resolution of the
anomalous-scaling paradox was presented earlier in [PRL 91, 131101 (2003); ApJ
584, 791 (2003)].Comment: 27 pages, changes to match published versio
Freight Rates and Productivity Gains in British Tramp Shipping 1869-1950
The standard source for pre-WWII global freight rate trends is the Isserlis British tramp shipping index. We think it is flawed, and that its sources offer vastly more information than the Isserlis aggregate contains. The new data confirm the precipitous decline in nominal freight rates before the World War I, but it also extends the series to the 1940s. Furthermore, our new series is linked to the post-World War II era (documented by David Hummels), so that we can be more precise about what has happened over the very long run. We also create route-specific deflators by using the prices of commodities transported. Previous scholars have deflated their nominal freight rate indices by a price index that includes tradables not carried on all routes and non-tradables not carried on any route. Our deflated indices offer a more effective measure of the contribution of declining freight rates to commodity-price convergence across trading regions. Using the pricedual method and new indices for factor prices, we then calculate total factor productivity growth pre-war and interwar for five global routes. Finally, we identify the sources of the total factor productivity growth.
Anomalous Radio-Wave Scattering from Interstellar Plasma Structures
This paper considers scattering screens that have arbitrary spatial
variations of scattering strength transverse to the line of sight, including
screens that are spatially well confined, such as disks and filaments. We
calculate the scattered image of a point source and the observed pulse shape of
a scattered impulse. The consequences of screen confinement include: (1) Source
image shapes that are determined by the physical extent of the screen rather
than by the shapes of much-smaller diffracting microirregularities. These
include image elongations and orientations that are frequency dependent. (2)
Variation with frequency of angular broadening that is much weaker than the
trademark \nu^{-2} scaling law (for a cold, unmagnetized plasma), including
frequency-independent cases; and (3) Similar departure of the pulse broadening
time from the usually expected \nu^{-4} scaling law. We briefly discuss
applications that include scattering of pulses from the Crab pulsar by
filaments in the Crab Nebula; image asymmetries from Galactic scattering of the
sources Cyg X-3, Sgr A*, and NGC 6334B; and scattering of background active
galactic nuclei by intervening galaxies. We also address the consequences for
inferences about the shape of the wavenumber spectrum of electron density
irregularities, which depend on scaling laws for the image size and the pulse
broadening. Future low-frequency (< 100 MHz) array observations will also be
strongly affected by the Galactic structure of scattering material. Our
formalism is derived in the context of radio scattering by plasma density
fluctuations. It is also applicable to optical, UV and X-ray scattering by
grains in the interstellar medium.Comment: 21 pages, LaTeX2e with AASTeX-4.0, 6 PostScript figures, accepted by
ApJ, revised version has minor changes to respond to referee comments and
suggestion
What can GLAST say about the origin of cosmic rays in other galaxies ?
Gamma rays in the band from 20 MeV to 300 GeV, used in combination with data
from radio and X-ray bands, provide a powerful tool for studying the origin of
cosmic rays in our sister galaxies Andromeda and the Magellanic Clouds.
Gamma-ray Large Area Space Telescope (GLAST) will spatially resolve these
galaxies and measure the spectrum and intensity of diffuse gamma radiation from
the collisions of cosmic rays with gas and dust in them. Observations of
Andromeda will give an external perspective on a spiral galaxy like the Milky
Way. Observations of the Magellanic Clouds will permit a study of cosmic rays
in dwarf irregular galaxies, where the confinement is certainly different and
the massive star formation rate is much greater.Comment: 4 pages including 6 figures; to appear in Proc. ACE-2000 Symp. "The
Acceleration and Transport of Energetic Particles Observed in the
Heliosphere" (Jan. 5-8, 2000, Indian Wells, CA), AIP Conf. Proc. More details
can be found at the LHEA GLAST page at
http://lhea-glast.gsfc.nasa.gov/pub/science/index.htm
A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses
Multipath propagation in the interstellar medium distorts radio pulses, an
effect predominant for distant pulsars observed at low frequencies. Typically,
broadened pulses are analyzed to determine the amount of propagation-induced
pulse broadening, but with little interest in determining the undistorted pulse
shapes. In this paper we develop and apply a method that recovers both the
intrinsic pulse shape and the pulse broadening function that describes the
scattering of an impulse. The method resembles the CLEAN algorithm used in
synthesis imaging applications, although we search for the best pulse
broadening function, and perform a true deconvolution to recover intrinsic
pulse structre. As figures of merit to optimize the deconvolution, we use the
positivity and symmetry of the deconvolved result along with the mean square
residual and the number of points below a given threshold. Our method makes no
prior assumptions about the intrinsic pulse shape and can be used for a range
of scattering functions for the interstellar medium. It can therefore be
applied to a wider variety of measured pulse shapes and degrees of scattering
than the previous approaches. We apply the technique to both simulated data and
data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical
Journa
Non-Gaussian Radio-Wave Scattering in the Interstellar Medium
It was recently suggested by Boldyrev & Gwinn that the characteristics of
radio scintillations from distant pulsars are best understood if the
interstellar electron-density fluctuations that cause the time broadening of
the radio pulses obey non-Gaussian statistics. In this picture the density
fluctuations are inferred to be strong on very small scales (). We argue that such density structures could correspond to the ionized
boundaries of molecular regions (clouds) and demonstrate that the power-law
distribution of scattering angles that is required to match the observations
arises naturally from the expected intersections of our line of sight with
randomly distributed, thin, approximately spherical ionized shells of this
type. We show that the observed change in the time-broadening behavior for
pulsar dispersion measures is consistent
with the expected effect of the general ISM turbulence, which should dominate
the scattering for nearby pulsars. We also point out that if the clouds are
ionized by nearby stars, then their boundaries may become turbulent on account
of an ionization front instability. This turbulence could be an alternative
cause of the inferred density structures. An additional effect that might
contribute to the strength of the small-scale fluctuations in this case is the
expected flattening of the turbulent density spectrum when the eddy sizes
approach the proton gyroscale.Comment: 15 pages, 3 figures, accepted to Ap
Undergraduate Nurses’ and Midwives’ Participation and Satisfaction with Live Interactive Webcasts
INTRODUCTION: E-Learning methods such as webcasting are being used increasingly in healthcare education, including that of nurses and midwives. Webcasting means live synchronous broadcasting over the internet, where students participate simultaneously in text ‘chat room’ interactive discussions when logged on to a webpage where they can see and hear a presentation such as a PowerPoint lecture, a list of other participants, and access ‘chat rooms’. AIMS: This paper reports student participation and satisfaction with the use of webcasting in a third year undergraduate nursing and midwifery research methods module in one higher education institution faculty of health and social work in the southwest of England, with students from distributed geographical locations. MATERIALS AND METHODS: Students chose either webcasts or face-to-face lectures. Following each of the four webcasts, a web-based evaluation questionnaire was administered in a cross-sectional survey design. RESULTS: Two thirds of students took part in webcasts and found them to be an acceptable teaching and learning strategy. Travel and cost savings were noted through not travelling to the main university campus, and these were statistically significantly correlated with students’ perception of gaining from the module and their overall satisfaction with webcasting. Across the four webcasts 5446 purposeful messages were posted indicating engagement with the material under study. CONCLUSIONS AND RECOMMENDATIONS: Webcasting is an effective teaching and learning strategy which is popular with students, allows remote access to teaching and learning, and offers time and cost savings to students. Further research is required to investigate the educational potential of this new technology
Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis
Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length. Relative to shoot dry weight (DW), primary root length decreased with increasing nitrate availability, while it increased with increasing phosphate supply. Lateral root density remained constant across a range of nitrate supplies, but decreased with increasing phosphate supply. In contrast, lateral root elongation was suppressed both by high nitrate and high phosphate supplies. Local supplies of high nitrate or phosphate in a patch also had different effects. Primary root growth was not affected by a high nitrate patch, but growth through a high phosphate patch reduced primary root growth after the root left the patch. A high nitrate patch induced an increase in lateral root density in the patch, whereas lateral root density was unaffected by a high phosphate patch. However, both phosphate- and nitrate-rich patches induced lateral root elongation in the patch and suppressed it outside the patch. This co-ordinated response of lateral roots also occurs in soil-grown plants exposed to a nutrient-rich patch. The auxin-resistant mutants axr1, axr4 and aux1 all showed the wild-type lateral root elongation responses to a nitrate-rich patch, suggesting that auxin is not required for this response
Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure
The temperature and pressure dependence of the partial density of phonon
states of iron atoms in superconducting Fe1.01Se was studied by 57Fe nuclear
inelastic scattering (NIS). The high energy resolution allows for a detailed
observation of spectral properties. A sharpening of the optical phonon modes
and shift of all spectral features towards higher energies by ~4% with
decreasing temperature from 296 K to 10 K was found. However, no detectable
change at the tetragonal - orthorhombic phase transition around 100 K was
observed. Application of a pressure of 6.7 GPa, connected with an increase of
the superconducting temperature from 8 K to 34 K, results in an increase of the
optical phonon mode energies at 296 K by ~12%, and an even more pronounced
increase for the lowest-lying transversal acoustic mode. Despite these strong
pressure-induced modifications of the phonon-DOS we conclude that the
pronounced increase of Tc in Fe1.01Se with pressure cannot be described in the
framework of classical electron-phonon coupling. This result suggests the
importance of spin fluctuations to the observed superconductivity
- …
