11,371 research outputs found
Intercontinental antenna arraying by symbol stream combining at ICE Giacobini-Zinner encounter
Deep space tracking stations on different continents were arrayed during the encounter of the International Cometary Explorer (ICE) spacecraft with the comet Giacobini-Zinner during September 9 through 12, 1985. This is the first time that telemetry signals received on different continents have been combined to enhance signal to noise ratio. The arraying was done in non-real time using the method of symbol stream combining. The improvement in signal to noise ratio was typically 2 dB over the stronger of the two stations in each array
NLO merging in tt+jets
In this talk the application of the recently introduced methods to merge NLO
calculations of successive jet multiplicities to the production of top pairs in
association with jets will be discussed, in particular a fresh look is taken at
the top quark forward-backward asymmetries. Emphasis will be put on the
achieved theoretical accuracy and the associated perturbative and
non-perturbative error estimates.Comment: 6 pages, 3 figures, proceedings contribution for EPS 2013, Stockholm,
17-24 Jul
Measuring Polynomial Invariants of Multi-Party Quantum States
We present networks for directly estimating the polynomial invariants of
multi-party quantum states under local transformations. The structure of these
networks is closely related to the structure of the invariants themselves and
this lends a physical interpretation to these otherwise abstract mathematical
quantities. Specifically, our networks estimate the invariants under local
unitary (LU) transformations and under stochastic local operations and
classical communication (SLOCC). Our networks can estimate the LU invariants
for multi-party states, where each party can have a Hilbert space of arbitrary
dimension and the SLOCC invariants for multi-qubit states. We analyze the
statistical efficiency of our networks compared to methods based on estimating
the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update
Analysis of melt-textured YBCO with nanoscale inclusions
Recently, particles with the chemical composition Y2Ba 4CuMOx where M U, Nb, Zr, etc., and sizes in the range of 50 - 200 nm have been generated within the YBCO matrix of bulk, melt-processed superconductors in order to serve as effective flux pinning sites. By means of AFM and electron backscatter diffraction (EBSD) measurements, we analyse the spatial distribution and the size distribution of these nanoparticles within the superconducting YBCO matrix
Perturbations of nuclear C*-algebras
Kadison and Kastler introduced a natural metric on the collection of all
C*-subalgebras of the bounded operators on a separable Hilbert space. They
conjectured that sufficiently close algebras are unitarily conjugate. We
establish this conjecture when one algebra is separable and nuclear. We also
consider one-sided versions of these notions, and we obtain embeddings from
certain near inclusions involving separable nuclear C*-algebras. At the end of
the paper we demonstrate how our methods lead to improved characterisations of
some of the types of algebras that are of current interest in the
classification programme.Comment: 45 page
Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces
We have extended the classical over-barrier model to simulate the
neutralization dynamics of highly charged ions interacting under grazing
incidence with conducting and insulating surfaces. Our calculations are based
on simple model rates for resonant and Auger transitions. We include effects
caused by the dielectric response of the target and, for insulators, localized
surface charges. Characteristic deviations regarding the charge transfer
processes from conducting and insulating targets to the ion are discussed. We
find good agreement with previously published experimental data for the image
energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI
crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree
Macroscopic Quantum Tunneling of Ferromagnetic Domain Walls
Quantum tunneling of domain walls out of an impurity potential in a
mesoscopic ferromagnetic sample is investigated. Using improved expressions for
the domain wall mass and for the pinning potential, we find that the cross-over
temperature between thermal activation and quantum tunneling is of a different
functional form than found previously. In materials like Ni or YIG, the
crossover temperatures are around 5 mK. We also find that the WKB exponent is
typically two orders of magnitude larger than current estimates. The sources
for these discrepancies are discussed, and precise estimates for the transition
from three-dimensional to one-dimensional magnetic behavior of a wire are
given. The cross-over temperatures from thermal to quantum transitions and
tunneling rates are calculated for various materials and sample sizes.Comment: 10 pages, 2 postscript figures, REVTe
Thermal and Chemical Equilibration in Relativistic Heavy Ion Collisions
We investigate the thermalization and the chemical equilibration of a parton
plasma created from Au+Au collision at LHC and RHIC energies starting from the
early moment when the particle momentum distributions in the central region
become for the first time isotropic due to longitudinal cooling. Using the
relaxation time approximation for the collision terms in the Boltzmann
equations for gluons and for quarks and the real collision terms constructed
from the simplest QCD interactions, we show that the collision times have the
right behaviour for equilibration. The magnitude of the quark (antiquark)
collision time remains bigger than the gluon collision time throughout the
lifetime of the plasma so that gluons are equilibrating faster than quarks both
chemically and kinetically. That is we have a two-stage equilibration scenario
as has been pointed out already by Shuryak sometimes ago. Full kinetic
equilibration is however slow and chemical equilibration cannot be completed
before the onset of the deconfinement phase transition assumed to be at
MeV. By comparing the collision entropy density rates of the
different processes, we show explicitly that inelastic processes, and
\emph{not} elastic processes as is commonly assumed, are dominant in the
equilibration of the plasma and that gluon branching leads the other processes
in entropy generation. We also show that, within perturbative QCD, processes
with higher power in \alpha_s need not be less important for the purpose of
equilibration than those with lower power. The state of equilibration of the
system has also a role to play. We compare our results with those of the parton
cascade model.Comment: 17 pages, revtex+psfig style with 14 embedded postscript figures, to
appear in Phys. Rev.
- …
