220 research outputs found
Defects in Meiotic Recombination Delay Progression Through Pachytene in Tex19.1-/- Mouse Spermatocytes
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13 mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1 −/− . The appearance of early recombination foci is delayed in Tex19.1 −/− spermatocytes during leptotene/zygotene, but some Tex19.1 −/− spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1 −/− spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1 −/− testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
What are the risk factors of colonoscopic perforation?
<p>Abstract</p> <p>Background</p> <p>Knowledge of the factors influencing colonoscopic perforation (CP) is of decisive importance, especially with regard to the avoidance or minimization of the perforations. The aim of this study was to determine the incidence and risk factors of CP in one of the endoscopic training centers accredited by the World Gastroenterology Organization.</p> <p>Methods</p> <p>The prospectively collected data were reviewed of all patients undergoing either colonoscopy or flexible sigmoidoscopy at the Faculty of Medicine Siriraj Hospital, Bangkok, Thailand between January 2005 and July 2008. The incidence of CP was evaluated. Eight independent patient-, endoscopist- and endoscopy-related variables were analyzed by a multivariate model to determine their association with CP.</p> <p>Results</p> <p>Over a 3.5-year period, 10,124 endoscopic procedures of the colon (8,987 colonoscopies and 1,137 flexible sigmoidoscopies) were performed. There were 15 colonic perforations (0.15%). Colonoscopy had a slightly higher risk of CP than flexible sigmoidoscopy (OR 1.77, 95%CI 0.23-13.51; p = 1.0). Patient gender, emergency endoscopy, anesthetic method, and the specialty or experience of the endoscopist were not significantly predictive of CP rate. In multivariate analysis, patient age of over 75 years (OR = 6.24, 95%CI 2.26-17.26; p < 0.001) and therapeutic endoscopy (OR = 2.98, 95%CI 1.08-8.23; p = 0.036) were the only two independent risk factors for CP.</p> <p>Conclusion</p> <p>The incidence of CP in this study was 0.15%. Patient age of over 75 years and therapeutic colonoscopy were two important risk factors for CP.</p
The Role of Demography and Markets in Determining Deforestation Rates Near Ranomafana National Park, Madagascar
The highland forests of Madagascar are home to some of the world's most unique and diverse flora and fauna and to some of its poorest people. This juxtaposition of poverty and biodiversity is continually reinforced by rapid population growth, which results in increasing pressure on the remaining forest habitat in the highland region, and the biodiversity therein. Here we derive a mathematical expression for the subsistence of households to assess the role of markets and household demography on deforestation near Ranomafana National Park. In villages closest to urban rice markets, households were likely to clear less land than our model predicted, presumably because they were purchasing food at market. This effect was offset by the large number of migrant households who cleared significantly more land between 1989–2003 than did residents throughout the region. Deforestation by migrant households typically occurred after a mean time lag of 9 years. Analyses suggest that while local conservation efforts in Madagascar have been successful at reducing the footprint of individual households, large-scale conservation must rely on policies that can reduce the establishment of new households in remaining forested areas
Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis
BACKGROUND: Cigarette smoke disrupts the protective barrier established by the airway epithelium through direct damage to the epithelial cells, leading to cell death. Since the morphology of the airway epithelium of smokers does not typically demonstrate necrosis, the most likely mechanism for epithelial cell death in response to cigarette smoke is apoptosis. We hypothesized that cigarette smoke directly up-regulates expression of apoptotic genes, which could play a role in airway epithelial apoptosis. METHODS: Microarray analysis of airway epithelium obtained by bronchoscopy on matched cohorts of 13 phenotypically normal smokers and 9 non-smokers was used to identify specific genes modulated by smoking that were associated with apoptosis. Among the up-regulated apoptotic genes was pirin (3.1-fold, p < 0.002), an iron-binding nuclear protein and transcription cofactor. In vitro studies using human bronchial cells exposed to cigarette smoke extract (CSE) and an adenovirus vector encoding the pirin cDNA (AdPirin) were performed to test the direct effect of cigarette smoke on pirin expression and the effect of pirin expression on apoptosis. RESULTS: Quantitative TaqMan RT-PCR confirmed a 2-fold increase in pirin expression in the airway epithelium of smokers compared to non-smokers (p < 0.02). CSE applied to primary human bronchial epithelial cell cultures demonstrated that pirin mRNA levels increase in a time-and concentration-dependent manner (p < 0.03, all conditions compared to controls). Overexpression of pirin, using the vector AdPirin, in human bronchial epithelial cells was associated with an increase in the number of apoptotic cells assessed by both TUNEL assay (5-fold, p < 0.01) and ELISA for cytoplasmic nucleosomes (19.3-fold, p < 0.01) compared to control adenovirus vector. CONCLUSION: These observations suggest that up-regulation of pirin may represent one mechanism by which cigarette smoke induces apoptosis in the airway epithelium, an observation that has implications for the pathogenesis of cigarette smoke-induced diseases
Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory
Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28− Regulatory T Lymphocytes by TCR Crosslinking
Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an α-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28− T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28− T lymphocytes. The Sp1-induced CD8+CD28− T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-β. The Sp1-induced CD8+CD28− T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28− T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28− T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-κB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28− population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28− T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system
A comparison of skeletal, dentoalveolar and soft tissue characteristics in white and black Brazilian subjects
- …
