88 research outputs found
Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe
In three spacetime dimensions, general relativity drastically simplifies,
becoming a ``topological'' theory with no propagating local degrees of freedom.
Nevertheless, many of the difficult conceptual problems of quantizing gravity
are still present. In this review, I summarize the rather large body of work
that has gone towards quantizing (2+1)-dimensional vacuum gravity in the
setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms,
additions, missing references welcome; v2: minor changes, added reference
The 100 most cited articles investigating the radiological staging of oesophageal and junctional cancer: a bibliometric analysis
Objectives
Accurate staging of oesophageal cancer (OC) is vital. Bibliometric analysis highlights key topics and publications that have shaped understanding of a subject. The 100 most cited articles investigating radiological staging of OC are identified.
Methods
The Thomas Reuters Web of Science database with search terms including “CT, PET, EUS, oesophageal and gastro-oesophageal junction cancer” was used to identify all English language, full-script articles. The 100 most cited articles were further analysed by topic, journal, author, year and institution.
Results
A total of 5,500 eligible papers were returned. The most cited paper was Flamen et al. (n = 306), investigating the utility of positron emission tomography (PET) for the staging of patients with potentially operable OC. The most common research topic was accuracy of staging investigations (n = 63). The article with the highest citation rate (38.00), defined as the number of citations divided by the number of complete years published, was Tixier et al. investigating PET texture analysis to predict treatment response to neo-adjuvant chemo-radiotherapy, cited 114 times since publication in 2011.
Conclusion
This bibliometric analysis has identified key publications regarded as important in radiological OC staging. Articles with the highest citation rates all investigated PET imaging, suggesting this modality could be the focus of future research
Thrombospondins in the heart: potential functions in cardiac remodeling
Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell–matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease
High Refractive Index Silicone Gels for Simultaneous Total Internal Reflection Fluorescence and Traction Force Microscopy of Adherent Cells
Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF) microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate
Cross-Platform Array Screening Identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as Genes Frequently Silenced by Methylation in Melanoma
Epigenetic regulation of tumor suppressor genes (TSGs) has been shown to play a central role in melanomagenesis. By integrating gene expression and methylation array analysis we identified novel candidate genes frequently methylated in melanoma. We validated the methylation status of the most promising genes using highly sensitive Sequenom Epityper assays in a large panel of melanoma cell lines and resected melanomas, and compared the findings with those from cultured melanocytes. We found transcript levels of UCHL1, COL1A2, THBS1 and TNFRSF10D were inversely correlated with promoter methylation. For THBS1 and UCHL1 the effect of this methylation on expression was confirmed at the protein level. Identification of these candidate TSGs and future research designed to understand how their silencing is related to melanoma development will increase our understanding of the etiology of this cancer and may provide tools for its early diagnosis
rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex
Background: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson’s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of noninvasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [ 11 C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [ 11 C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [ 11 C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [ 11 C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help t
The 100 most cited articles investigating the radiological staging of oesophageal and junctional cancer: a bibliometric analysis
The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering.
Monoclonal antibodies bound to subunits of the integrin GPIIb-IIIa are internalized and interfere with filopodia formation and platelet aggregation
The monoclonal antibodies Tab and AP3 are directed, respectively, against GPIIb and GPIIIa, the subunits of the platelet fibrinogen receptor. When added together to platelets, these antibodies prevent adenosine diphosphate (ADP)-induced platelet aggregation, despite normal fibrinogen binding (Newman et al, Blood 69:668, 1987). To explore the cellular requirements of aggregation after fibrinogen binding, we used several techniques to study platelets treated with Tab and AP3, then stimulated with ADP. We used scanning and transmission electron microscopy to evaluate platelet morphology, immunolabel- surface replication to determine whether individual GPIIb-IIIa complexes clustered, immunocytochemistry on frozen thin sections to study the subcellular distribution of the integrin GPIIb-IIIa and fibrinogen, and biochemical methods to assess the activation of the platelet cytoskeleton. We found that the treated cells had short, blunted projections instead of normal filopodia. Other morphologic abnormalities, apparent in thin section, were aberrantly placed alpha- granules and microtubules, and a prominent, worm-like, fibrinogen- filled surface-connected canalicular system. Biochemical analysis suggested that such platelets undergo massive actomyosin-controlled membrane flow, which serves to sequester GPIIb-IIIa and makes the platelets refractory to aggregation. We conclude that aggregation requires the formation of long, slender filopodia, probably directed by cytoskeletal rearrangements after activation, and that the transmembrane GPIIb-IIIa complex may play a role in signaling these events.</jats:p
- …
