5,531 research outputs found
Electronic transport in polycrystalline graphene
Most materials in available macroscopic quantities are polycrystalline.
Graphene, a recently discovered two-dimensional form of carbon with strong
potential for replacing silicon in future electronics, is no exception. There
is growing evidence of the polycrystalline nature of graphene samples obtained
using various techniques. Grain boundaries, intrinsic topological defects of
polycrystalline materials, are expected to dramatically alter the electronic
transport in graphene. Here, we develop a theory of charge carrier transmission
through grain boundaries composed of a periodic array of dislocations in
graphene based on the momentum conservation principle. Depending on the grain
boundary structure we find two distinct transport behaviours - either high
transparency, or perfect reflection of charge carriers over remarkably large
energy ranges. First-principles quantum transport calculations are used to
verify and further investigate this striking behaviour. Our study sheds light
on the transport properties of large-area graphene samples. Furthermore,
purposeful engineering of periodic grain boundaries with tunable transport gaps
would allow for controlling charge currents without the need of introducing
bulk band gaps in otherwise semimetallic graphene. The proposed approach can be
regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material
Letter from Travis Wm. Miller to Dr. M.C. Cunningham regarding equipment contracts for the new library building for Forsyth Library
A letter from Travis Wm. Miller, Assistant Regional Administrator for Metropolitan Development at the Department of Housing and Urban Development (HUD), to Dr. Morton C. Cunningham, president of Fort Hays Kansas State College, regarding the award of equipment contracts for the new library building for Forsyth Library.https://scholars.fhsu.edu/library_bldg/1124/thumbnail.jp
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors
The electromagnetic nucleon form-factors data are studied with artificial
feed forward neural networks. As a result the unbiased model-independent
form-factor parametrizations are evaluated together with uncertainties. The
Bayesian approach for the neural networks is adapted for chi2 error-like
function and applied to the data analysis. The sequence of the feed forward
neural networks with one hidden layer of units is considered. The given neural
network represents a particular form-factor parametrization. The so-called
evidence (the measure of how much the data favor given statistical model) is
computed with the Bayesian framework and it is used to determine the best form
factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the
prior assumptions is added. The manuscript contains 4 new figures and 2 new
tables (32 pages, 15 figures, 2 tables
The Efficiency of a Wind Tunnel
If, by some means, a steady state of motion of a perfect fluid were established in an ideal wind tunnel, there would be no losses, and the motion would persist indefinitely. In the actual tunnel, the function of the motor-fan group is overcome by the total loss of head in the tube due to friction and eddies
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain
Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe
Histone Acetylation-Mediated Regulation of the Hippo Pathway
The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al
Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm
The anomalous magnetic moment of the negative muon has been measured to a
precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient
Synchrotron. This result is based on data collected in 2001, and is over an
order of magnitude more precise than the previous measurement of the negative
muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the
first uncertainty is statistical and the second is sytematic, is consistend
with previous measurements of the anomaly for the positive and negative muon.
The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10}
(0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to
reflect referee comments. Text further revised to reflect additional referee
comments and a corrected Fig. 3 replaces the older versio
- …
