43 research outputs found
Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study
First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp(2) and sp(3) type hybridization) as a new carbon based anode material. The pi electron of C-2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp(2) + sp(3)) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp(3) hybridized Si structure for modern Lithium ion batteries.ope
Climate change and freshwater zooplankton: what does it boil down to?
Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We
discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration
in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of
ecology is of particular applicability in climate change
research owing to the inherently predictive nature of
this field. In the future, ecologists should expand their
research on species beyond daphnids, should address
questions as to how different intrinsic and extrinsic
drivers interact, should move beyond correlative
approaches toward more mechanistic explanations,
and last but not least, should facilitate transfer of
biological data both across space and time
Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes
Fish play a key role in the trophic dynamics of lakes. With climate warming, complex changes in fish assemblage structure may be expected owing to direct effects of temperature and indirect effects operating through eutrophication, water level changes, stratification and salinisation. We reviewed published and new long-term (10–100 years) fish data series from 24 European lakes (area: 0.04–5,648 km2; mean depth: 1–177 m; a north–south gradient from Sweden to Spain). Along with an annual temperature increase of about 0.15–0.3°C per decade profound changes have occurred in either fish assemblage composition, body size and/or age structure during recent decades and a shift towards higher dominance of eurythermal species. These shifts have occurred despite a reduction in nutrient loading in many of the lakes that should have benefited the larger-sized individuals and the fish species typically inhabiting cold-water, low-nutrient lakes. The cold-stenothermic Arctic charr has been particularly affected and its abundance has decreased in the majority of the lakes where its presence was recorded. The harvest of cool-stenothermal brown trout has decreased substantially in two southern lakes. Vendace, whitefish and smelt show a different response depending on lake depth and latitude. Perch has apparently been stimulated in the north, with stronger year classes in warm years, but its abundance has declined in the southern Lake Maggiore, Italy. Where introduced, roach seems to take advantage of the higher temperature after years of low population densities. Eurythermal species such as common bream, pike–perch and/or shad are apparently on the increase in several of the lakes. The response of fish to the warming has been surprisingly strong and fast in recent decades, making them ideal sentinels for detecting and documenting climate-induced modifications of freshwater ecosystems
