751 research outputs found

    A generalization of the q-Saalschutz sum and the Burge transform

    Full text link
    A generalization of the q-(Pfaff)-Saalschutz summation formula is proved. This implies a generalization of the Burge transform, resulting in an additional dimension of the ``Burge tree''. Limiting cases of our summation formula imply the (higher-level) Bailey lemma, provide a new decomposition of the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe

    Aerial dissemination of Clostridium difficile spores

    Get PDF
    Background: Clostridium difficile-associated diarrhoea (CDAD) is a frequently occurring healthcare-associated infection, which is responsible for significant morbidity and mortality amongst elderly patients in healthcare facilities. Environmental contamination is known to play an important contributory role in the spread of CDAD and it is suspected that contamination might be occurring as a result of aerial dissemination of C. difficile spores. However previous studies have failed to isolate C. difficile from air in hospitals. In an attempt to clarify this issue we undertook a short controlled pilot study in an elderly care ward with the aim of culturing C. difficile from the air. Methods: In a survey undertaken during February (two days) 2006 and March (two days) 2007, air samples were collected using a portable cyclone sampler and surface samples collected using contact plates in a UK hospital. Sampling took place in a six bedded elderly care bay (Study) during February 2006 and in March 2007 both the study bay and a four bedded orthopaedic bay (Control). Particulate material from the air was collected in Ringer's solution, alcohol shocked and plated out in triplicate onto Brazier's CCEY agar without egg yolk, but supplemented with 5 mg/L of lysozyme. After incubation, the identity of isolates was confirmed by standard techniques. Ribotyping and REP-PCR fingerprinting were used to further characterise isolates. Results: On both days in February 2006, C. difficile was cultured from the air with 23 samples yielding the bacterium (mean counts 53 – 426 cfu/m3 of air). One representative isolate from each of these was characterized further. Of the 23 isolates, 22 were ribotype 001 and were indistinguishable on REP-PCR typing. C. difficile was not cultured from the air or surfaces of either hospital bay during the two days in March 2007. Conclusion: This pilot study produced clear evidence of sporadic aerial dissemination of spores of a clone of C. difficile, a finding which may help to explain why CDAD is so persistent within hospitals and difficult to eradicate. Although preliminary, the findings reinforce concerns that current C. difficile control measures may be inadequate and suggest that improved ward ventilation may help to reduce the spread of CDAD in healthcare facilities

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions

    Get PDF
    Dental calculus (calcified dental plaque) is a source of multiple types of data on life history. Recent research has targeted the plant microremains preserved in this mineralised deposit as a source of dietary and health information for recent and past populations. However, it is unclear to what extent we can interpret behaviour from microremains. Few studies to date have directly compared the microremain record from dental calculus to dietary records, and none with long-term observation dietary records, thus limiting how we can interpret diet, food acquisition and behaviour. Here we present a high-resolution analysis of calculus microremains from wild chimpanzees (Pan troglodytes verus) of Taï National Park, Côte d"Ivoire. We test microremain assemblages against more tan two decades of field behavioural observations to establish the ability of calculus to capture the composition of diet. Our results show that some microremain classes accumulate as long-lived dietary markers. Phytolith abundance in calculus can reflect the proportions of plants in the diet, yet this pattern is not true for starches. We also report microremains can record information about other dietary behaviours, such as the age of weaning and learned food processing techniques like nutcracking

    Characterization and genome sequencing of a Citrobacter freundii phage CfP1 harboring a lysin active against multidrug-resistant isolates

    Get PDF
    Citrobacter spp., although frequently ignored, is emerging as an important nosocomial bacterium able to cause various superficial and systemic life-threatening infections. Considered to be hard-to-treat bacterium due to its pattern of high antibiotic resistance, it is important to develop effective measures for early and efficient therapy. In this study, the first myovirus (vB_CfrM_CfP1) lytic for Citrobacter freundii was microbiologically and genomically characterized. Its morphology, activity spectrum, burst size, and biophysical stability spectrum were determined. CfP1 specifically infects C. freundii, has broad host range (>85 %; 21 strains tested), a burst size of 45 PFU/cell, and is very stable under different temperatures (20 to 50 °C) and pH (3 to 11) values. CfP1 demonstrated to be highly virulent against multidrug-resistant clinical isolates up to 12 antibiotics, including penicillins, cephalosporins, carbapenems, and fluroquinoles. Genomically, CfP1 has a dsDNA molecule with 180,219 bp with average GC content of 43.1 % and codes for 273 CDSs. The genome architecture is organized into function-specific gene clusters typical for tailed phages, sharing 46 to 94 % nucleotide identity to other Citrobacter phages. The lysin gene encoding a predicted D-Ala-D-Ala carboxypeptidase was also cloned and expressed in Escherichia coli and its activity evaluated in terms of pH, ionic strength, and temperature. The lysine optimum activity was reached at 20 mM HEPES, pH 7 at 37 °C, and was able to significantly reduce all C. freundii (>2 logs) as well as Citrobacter koseri (>4 logs) strains tested. Interestingly, the antimicrobial activity of this enzyme was performed without the need of pretreatment with outer membrane-destabilizing agents. These results indicate that CfP1 lysin is a good candidate to control problematic Citrobacter infections, for which current antibiotics are no longer effective.This study was funded by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER006684), and the PhD grants SFRH/BPD/111653/2015 and SFRH/BPD/69356/2010

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
    corecore