2,796 research outputs found

    Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers

    Get PDF
    A rate-equation model is developed, with the consideration of size effects, to analyze the steady state and dynamic behavior of index-guided vertical-cavity surface-emitting lasers. The size dependence of spatial hole burning, cavity loss, as well as thermal resistance of device cavity are taken into account. Using this model, the influence of size effects on the amplitude modulation response and second-order harmonic distortion are studied. It is found that a laser with a small core radius exhibits better modulation response and less harmonic distortion than that of a large waveguide device, however, there is a tradeoff between the output power and modulation efficiency of the lasers.published_or_final_versio

    Electrical reliability and leakage mechanisms in highly resistive multiferroic La0.1Bi0.9FeO3 ceramics

    Get PDF
    Multiferroic La0.1 Bi0.9 FeO3 (LBFO) ceramics with high resistivity were synthesized by using a modified rapid thermal process. The LBFO ceramics show very low leakage and low dielectric loss. Well saturated ferroelectric hysteresis loops and polarization switching currents have been observed. For a maximum applied electric field of 145 kV/cm, the remanent polarization is 17.8 μC/ cm2 and the coercive filed is 75 kV/cm. The dominant conduction mechanism in the LBFO ceramics has been found to be the space-charge-limited current mechanism rather than the thermal excitation mechanism. Electrical reliability related to the fatigue and polarization retention of the LBFO ceramics has also been discussed with the leakage mechanisms. © 2011 American Institute of Physics.published_or_final_versio

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    Get PDF
    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions

    In situ epitaxial MgB2 thin films for superconducting electronics

    Full text link
    A thin film technology compatible with multilayer device fabrication is critical for exploring the potential of the 39-K superconductor magnesium diboride for superconducting electronics. Using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process, it is shown that the high Mg vapor pressure necessary to keep the MgB2_2 phase thermodynamically stable can be achieved for the {\it in situ} growth of MgB2_2 thin films. The films grow epitaxially on (0001) sapphire and (0001) 4H-SiC substrates and show a bulk-like TcT_c of 39 K, a JcJ_c(4.2K) of 1.2×1071.2 \times 10^7 A/cm2^2 in zero field, and a Hc2(0)H_{c2}(0) of 29.2 T in parallel magnetic field. The surface is smooth with a root-mean-square roughness of 2.5 nm for MgB2_2 films on SiC. This deposition method opens tremendous opportunities for superconducting electronics using MgB2_2

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    A first AFLP-based genetic linkage map for brine shrimp Artemia franciscana and its application in mapping the sex locus

    Get PDF
    We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full-sib family we identified 21 male and 22 female linkage groups (2n = 42), covering 1,041 and 1,313 cM respectively. Fifteen putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a WZ-ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species

    Enhanced thermoelectric performance of a chalcopyrite compound CuIn3Se5-xTex (x=0~0.5) through crystal structure engineering

    Get PDF
    In this work the chalcopyrite CuIn3Se5−xTex (x = 0~0.5) with space group through isoelectronic substitution of Te for Se have been prepared, and the crystal structure dilation has been observed with increasing Te content. This substitution allows the anion position displacement ∆u = 0.25-u to be zero at x ≈ 0.15. However, the material at x = 0.1 (∆u = 0.15 × 10−3), which is the critical Te content, presents the best thermoelectric (TE) performance with dimensionless figure of merit ZT = 0.4 at 930 K. As x value increases from 0.1, the quality factor B, which informs about how large a ZT can be expected for any given material, decreases, and the TE performance degrades gradually due to the reduction in nH and enhancement in κL. Combining with the ZTs from several chalcopyrite compounds, it is believable that the best thermoelectric performance can be achieved at a certain ∆u value (∆u ≠ 0) for a specific space group if their crystal structures can be engineered
    corecore