33,806 research outputs found
Cosmic-ray acceleration at collisionless astrophysical shocks using Monte-Carlo simulations
Context. The diffusive shock acceleration mechanism has been widely accepted
as the acceleration mechanism for galactic cosmic rays. While self-consistent
hybrid simulations have shown how power-law spectra are produced, detailed
information on the interplay of diffusive particle motion and the turbulent
electromagnetic fields responsible for repeated shock crossings are still
elusive. Aims. The framework of test-particle theory is applied to investigate
the effect of diffusive shock acceleration by inspecting the obtained
cosmic-ray energy spectra. The resulting energy spectra can be obtained this
way from the particle motion and, depending on the prescribed turbulence model,
the influence of stochastic acceleration through plasma waves can be studied.
Methods. A numerical Monte-Carlo simulation code is extended to include
collisionless shock waves. This allows one to trace the trajectories of test
particle while they are being accelerated. In addition, the diffusion
coefficients can be obtained directly from the particle motion, which allows
for a detailed understanding of the acceleration process. Results. The classic
result of an energy spectrum with is only reproduced for parallel
shocks, while, for all other cases, the energy spectral index is reduced
depending on the shock obliqueness. Qualitatively, this can be explained in
terms of the diffusion coefficients in the directions that are parallel and
perpendicular to the shock front.Comment: 12 pages, 15 figures, accepted for publication in A&
Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications
We present a method for designing robust controllers for dynamical systems with linear temporal logic specifications. We abstract the original system by a finite Markov Decision Process (MDP) that has transition probabilities in a specified uncertainty set. A robust control policy for the MDP is generated that maximizes the worst-case probability of satisfying the specification over all transition probabilities in the uncertainty set. To do this, we use a procedure from probabilistic model checking to combine the system model with an automaton representing the specification. This new MDP is then transformed into an equivalent form that satisfies assumptions for stochastic shortest path dynamic programming. A robust version of dynamic programming allows us to solve for a -suboptimal robust control policy with time complexity times that for the non-robust case. We then implement this control policy on the original dynamical system
Sedimentation and polar order of active bottom-heavy particles
Self-propelled particles in an external gravitational field have been shown
to display both an increased sedimentation length and polar order even without
particle interactions. Here, we investigate self-propelled particles which
additionally are bottom-heavy, that is they feel a torque aligning them to swim
against the gravitational field. For bottom-heavy particles the gravitational
field has the two opposite effects of i) sedimentation and ii) upward alignment
of the particles' swimming direction. We perform a multipole expansion of the
one-particle distribution with respect to orientation and derive expressions
for sedimentation length and mean particle orientation which we check against
Brownian Dynamics simulations. For large strength of gravity or small particle
speeds and aligning torque, we observe sedimentation with increased
sedimentation length compared with passive colloids but also active colloids
without bottom-heaviness. Increasing, for example, swimming speed the
sedimentation profile is inverted and the particles swim towards the top wall
of the enclosing box. We find maximal orientational order at intermediate
swimming speeds for both cases of particles with bottom-heaviness and those
without. Ordering unsurprisingly is increased for the bottom-heavy particles,
but this difference disappears at higher levels of activity and for very high
activities ordering goes to zero in both cases.Comment: 6 pages, 3 figure
Thermodynamic Approach to Phase Coexistence in Ternary Phospholipi-Cholesterol Mixtures
We introduce a simple and predictive model for determining the phase
stability of ternary phospholipid-cholesterol mixtures. Assuming that
competition between the liquid and gel order of the phospholipids is the main
driving force behind lipid segregation, we derive a Gibbs free-energy of
mixing, based on the thermodynamic properties of the lipids main transition. A
numerical approach was devised that enable the fast and efficient determination
of the ternary diagrams associated with our Gibbs free-energy. The computed
phase coexistence diagram of DOPC/DPPC/cholesterol reproduces well known
features for this system at 10\circ C, as well as its evolution with
temperature
An Improved Estimator for the Correlation Function of 2D Nonlinear Sigma Models
I present a new improved estimator for the correlation function of 2D
nonlinear sigma models. Numerical tests for the 2D XY model and the 2D
O(3)-invariant vector model were performed. For small physical volume, i.e. a
lattice size small compared to the to the bulk correlation length, a reduction
of the statistical error of the finite system correlation length by a factor of
up to 30 compared to the cluster-improved estimator was observed. This
improvement allows for a very accurate determination of the running coupling
proposed by M. L"uscher et al. for 2D O(N)-invariant vector models.Comment: 20 pages, LaTeX + 2 ps figures, CERN-TH.7375/9
Cytoplasmic streaming in plant cells: the role of wall slip
We present a computer simulation study, via lattice Boltzmann simulations, of
a microscopic model for cytoplasmic streaming in algal cells such as those of
Chara corallina. We modelled myosin motors tracking along actin lanes as
spheres undergoing directed motion along fixed lines. The sphere dimension
takes into account the fact that motors drag vesicles or other organelles, and,
unlike previous work, we model the boundary close to which the motors move as
walls with a finite slip layer. By using realistic parameter values for actin
lane and myosin density, as well as for endoplasmic and vacuole viscosity and
the slip layer close to the wall, we find that this simplified view, which does
not rely on any coupling between motors, cytoplasm and vacuole other than that
provided by viscous Stokes flow, is enough to account for the observed
magnitude of streaming velocities in intracellular fluid in living plant cells.Comment: 18 pages (incl. appendix), 10 figures, accepted in J R Soc Interfac
Surface properties of ocean fronts
Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models
From Uncertainty Data to Robust Policies for Temporal Logic Planning
We consider the problem of synthesizing robust disturbance feedback policies
for systems performing complex tasks. We formulate the tasks as linear temporal
logic specifications and encode them into an optimization framework via
mixed-integer constraints. Both the system dynamics and the specifications are
known but affected by uncertainty. The distribution of the uncertainty is
unknown, however realizations can be obtained. We introduce a data-driven
approach where the constraints are fulfilled for a set of realizations and
provide probabilistic generalization guarantees as a function of the number of
considered realizations. We use separate chance constraints for the
satisfaction of the specification and operational constraints. This allows us
to quantify their violation probabilities independently. We compute disturbance
feedback policies as solutions of mixed-integer linear or quadratic
optimization problems. By using feedback we can exploit information of past
realizations and provide feasibility for a wider range of situations compared
to static input sequences. We demonstrate the proposed method on two robust
motion-planning case studies for autonomous driving
Constructing a gazebo: supporting teamwork in a tightly coupled, distributed task in virtual reality
Many tasks require teamwork. Team members may work concurrently, but there must be some occasions of coming together. Collaborative virtual environments (CVEs) allow distributed teams to come together across distance to share a task. Studies of CVE systems have tended to focus on the sense of presence or copresence with other people. They have avoided studying close interaction between us-ers, such as the shared manipulation of objects, because CVEs suffer from inherent network delays and often have cumbersome user interfaces. Little is known about the ef-fectiveness of collaboration in tasks requiring various forms of object sharing and, in particular, the concurrent manipu-lation of objects.
This paper investigates the effectiveness of supporting teamwork among a geographically distributed group in a task that requires the shared manipulation of objects. To complete the task, users must share objects through con-current manipulation of both the same and distinct at-tributes. The effectiveness of teamwork is measured in terms of time taken to achieve each step, as well as the impression of users. The effect of interface is examined by comparing various combinations of walk-in cubic immersive projection technology (IPT) displays and desktop devices
- …
