1,176 research outputs found
Identification of volatiles released by diapausing brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae)
The brown marmorated stink bug, Halyomorpha halys, is an agricultural and urban pest that has become widely established as an invasive species of major concern in the USA and across Europe. This species forms large aggregations when entering diapause, and it is often these aggregations that are found by officials conducting inspections of internationally shipped freight. Identifying the presence of diapausing aggregations of H. halys using their emissions of volatile organic compounds (VOCs) may be a potential means for detecting and intercepting them during international freight inspections. Headspace samples were collected from aggregations of diapausing H. halys using volatile collection traps (VCTs) and solid phase microextraction. The only compound detected in all samples was tridecane, with small amounts of (E)-2-decenal found in most samples. We also monitored the release of defensive odors, following mechanical agitation of diapausing and diapause-disrupted adult H. halys. Diapausing groups were significantly more likely to release defensive odors than diapause-disrupted groups. The predominant compounds consistently found from both groups were tridecane, (E)-2-decenal, and 4-oxo-(E)-2-hexenal, with a small abundance of dodecane. Our findings show that diapausing H. halys do release defensive compounds, and suggest that volatile sampling may be feasible to detect H. halys in freight.Contributions by L.J.N. and E.G.B. were supported by the New Zealand government via
Ministry of Business, Innovation, and Employment core funding to Plant and Food Research and Scion (contract C04X1104), respectively, and the BetterBorder Biosecurity Collaboration (www.b3nz.org)
The effect of experimental hyperoxia on erythrocytes’ oxygen-transport function
The aim of this study was to investigate the effect of hyperoxia, calcium ions and pH value on the composition of major phospholipids in human erythrocyte membranes and erythrocytes’ oxygen-transport function. To create a model of hyperoxia, we saturated the incubated mixture with oxygen by constant passing of oxygen–air mixture through the incubation medium. To assess the effect of elevated calcium ion concentrations, CaCl2 was added to the incubation medium. An incubation medium with different pH was used to study the effect of various pH values. Lipids were extracted from erythrocytes and chromatographic separation was carried out in a thin layer of silica gel deposited on a glass plate. The thiobarbituric acid (TBA)-active products and the content of diene conjugates (DC) in erythrocytes were determined. The oxygen-binding capacity of haemoglobin was evaluated using Raman spectroscopy. The obtained results indicated that hyperoxia causes deep changes both in the composition and character of bilayer lipids of erythrocyte membranes, which affects the functional characteristics of erythrocytes, primarily the oxygen-transport properties of erythrocyte haemoglobin. It should be noted that a combination of Ca2+ ions and change in the pH value intensify the processes associated with disruption of phospholipids’ composition. The findings indicate that the lipid phase is one of the key elements in the functioning of erythrocytes in norm as well as during development of various pathological processes
Functional characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 involved in biotransformation of β-Myrcene and related plant-derived volatiles
Pseudomonas
sp. strain M1 is able to mineralize highly hydrophobic and recalcitrant compounds, such as benzene, phenol, and their methylated/halogenated derivatives, as well as the backbone of several monoterpenes. The ability to use such a spectrum of compounds as the sole carbon source is, most probably, associated with a genetic background evolved under different environmental constraints. The outstanding performance of strain M1 regarding β-myrcene catabolism was elucidated in this work, with a focus on the biocatalytical potential of the β-myrcene-associated core code, comprised in a 28-kb genomic island (GI), predicted to be organized in 8 transcriptional units. Functional characterization of this locus with promoter probes and analytical approaches validated the genetic organization predictedin silicoand associated the β-myrcene-induced promoter activity to the production of β-myrcene derivatives. Notably, by using a whole-genome mutagenesis strategy, different genotypes of the 28-kb GI were generated, resulting in the identification of a novel putative β-myrcene hydroxylase, responsible for the initial oxidation of β-myrcene into myrcen-8-ol, and a sensor-like regulatory protein, whose inactivation abolished themyr
+
trait of M1 cells. Moreover, it was demonstrated that the range of monoterpene substrates of the M1 enzymatic repertoire, besides β-myrcene, also includes other acyclic (e.g., β-linalool) and cyclic [e.g.,R-(+)-limonene and (-)-β-pinene] molecules. Our findings are the cornerstone for following metabolic engineering approaches and hint at a major role of the 28-kb GI in the biotransformation of a broad monoterpene backbone spectrum for its future biotechnological applications.IMPORTANCEInformation regarding microbial systems able to biotransform monoterpenes, especially β-myrcene, is limited and focused mainly on nonsystematic metabolite identification. Complete and detailed knowledge at the genetic, protein, metabolite, and regulatory levels is essential in order to set a model organism or a catabolic system as a biotechnology tool. Moreover, molecular characterization of reported systems is scarce, almost nonexistent, limiting advances in the development of optimized cell factories with strategies based on the new generation of metabolic engineering platforms. This study provides new insights into the intricate molecular functionalities associated with β-myrcene catabolism inPseudomonas, envisaging the production of a molecular knowledge base about the underlying catalytic and regulatory mechanisms of plant-derived volatile catabolic pathways.Vectors from the Standard European Vector Architecture (SEVA) library and pBAM1
used in this work were kindly provided by Victor de Lorenzo (CNB-CSIC, Madrid, Spain).
This work was supported by the strategic program UID/BIA/04050/2013 (POCI-01-
0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF
through the COMPETE2020-Programa Operacional Competitividade e Internacionalização
(POCI) and through a Ph.D. grant (grant SFRH/BD/76894/2011) to P.S.-C.info:eu-repo/semantics/publishedVersio
Recommended from our members
Multiple models and experiments underscore large uncertainty in soil carbon dynamics
Soils contain more carbon than plants or the atmosphere, and sensitivities of soil organic carbon (SOC) stocks to changing climate and plant productivity are a major uncertainty in global carbon cycle projections. Despite a consensus that microbial degradation and mineral stabilization processes control SOC cycling, no systematic synthesis of long-term warming and litter addition experiments has been used to test process-based microbe-mineral SOC models. We explored SOC responses to warming and increased carbon inputs using a synthesis of 147 field manipulation experiments and five SOC models with different representations of microbial and mineral processes. Model projections diverged but encompassed a similar range of variability as the experimental results. Experimental measurements were insufficient to eliminate or validate individual model outcomes. While all models projected that CO efflux would increase and SOC stocks would decline under warming, nearly one-third of experiments observed decreases in CO flux and nearly half of experiments observed increases in SOC stocks under warming. Long-term measurements of C inputs to soil and their changes under warming are needed to reconcile modeled and observed patterns. Measurements separating the responses of mineral-protected and unprotected SOC fractions in manipulation experiments are needed to address key uncertainties in microbial degradation and mineral stabilization mechanisms. Integrating models with experimental design will allow targeting of these uncertainties and help to reconcile divergence among models to produce more confident projections of SOC responses to global changes. 2
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
Emergent dynamic chirality in a thermally driven artificial spin ratchet
Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Sexual selection protects against extinction
Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Improved Measurement of the Pseudoscalar Decay Constant
We present a new determination of the Ds decay constant, f_{Ds} using 5
million continuum charm events obtained with the CLEO II detector. Our value is
derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of
0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6
+/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We
compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …
