1,593 research outputs found

    Two Poems

    Get PDF
    Poetry by Brook Pearso

    From Programme Theory to Logic Models for Multispecialty Community Providers: A Realist Evidence Synthesis

    Get PDF
    Background: The NHS policy of constructing multispecialty community providers (MCPs) rests on a complex set of assumptions about how health systems can replace hospital use with enhanced primary care for people with complex, chronic or multiple health problems, while contributing savings to health-care budgets. Objectives: To use policy-makers’ assumptions to elicit an initial programme theory (IPT) of how MCPs can achieve their outcomes and to compare this with published secondary evidence and revise the programme theory accordingly. Design: Realist synthesis with a three-stage method: (1) for policy documents, elicit the IPT underlying the MCP policy, (2) review and synthesise secondary evidence relevant to those assumptions and (3) compare the programme theory with the secondary evidence and, when necessary, reformulate the programme theory in a more evidence-based way. Data sources: Systematic searches and data extraction using (1) the Health Management Information Consortium (HMIC) database for policy statements and (2) topically appropriate databases, including MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, PsycINFO, the Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Applied Social Sciences Index and Abstracts (ASSIA). A total of 1319 titles and abstracts were reviewed in two rounds and 116 were selected for full-text data extraction. We extracted data using a formal data extraction tool and synthesised them using a framework reflecting the main policy assumptions. Results: The IPT of MCPs contained 28 interconnected context–mechanism–outcome relationships. Few policy statements specified what contexts the policy mechanisms required. We found strong evidence supporting the IPT assumptions concerning organisational culture, interorganisational network management, multidisciplinary teams (MDTs), the uses and effects of health information technology (HIT) in MCP-like settings, planned referral networks, care planning for individual patients and the diversion of patients from inpatient to primary care. The evidence was weaker, or mixed (supporting some of the constituent assumptions but not others), concerning voluntary sector involvement, the effects of preventative care on hospital admissions and patient experience, planned referral networks and demand management systems. The evidence about the effects of referral reductions on costs was equivocal. We found no studies confirming that the development of preventative care would reduce demands on inpatient services. The IPT had overlooked certain mechanisms relevant to MCPs, mostly concerning MDTs and the uses of HITs. Limitations: The studies reviewed were limited to Organisation for Economic Co-operation and Development countries and, because of the large amount of published material, the period 2014–16, assuming that later studies, especially systematic reviews, already include important earlier findings. No empirical studies of MCPs yet existed. Conclusions: Multidisciplinary teams are a central mechanism by which MCPs (and equivalent networks and organisations) work, provided that the teams include the relevant professions (hence, organisations) and, for care planning, individual patients. Further primary research would be required to test elements of the revised logic model, in particular about (1) how MDTs and enhanced general practice compare and interact, or can be combined, in managing referral networks and (2) under what circumstances diverting patients from in-patient to primary care reduces NHS costs and improves the quality of patient experience

    Seismic/Ley lines

    Get PDF
    Poetry by Brook Pearso

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information

    Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis

    Get PDF
    Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. © 2009 Piuri et al

    Very Cold Gas and Dark Matter

    Get PDF
    We have recently proposed a new candidate for baryonic dark matter: very cold molecular gas, in near-isothermal equilibrium with the cosmic background radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed in a fractal structure, resembling the hierarchical structure of the detected interstellar medium. We present some perspectives of detecting this very cold gas, either directly or indirectly. The H2_2 molecule has an "ultrafine" structure, due to the interaction between the rotation-induced magnetic moment and the nuclear spins. But the lines fall in the km domain, and are very weak. The best opportunity might be the UV absorption of H2_2 in front of quasars. The unexpected cold dust component, revealed by the COBE/FIRAS submillimetric results, could also be due to this very cold H2_2 gas, through collision-induced radiation, or solid H2_2 grains or snowflakes. The γ\gamma-ray distribution, much more radially extended than the supernovae at the origin of cosmic rays acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded compressed tar file. To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht
    corecore