235 research outputs found
Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications
This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks
Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions
Many-body effects are at the very heart of diverse phenomena found in
condensed-matter physics. One striking example is the Mott insulator phase
where conductivity is suppressed as a result of a strong repulsive interaction.
Advances in cold atom physics have led to the realization of the Mott
insulating phases of atoms in an optical lattice, mimicking the corresponding
condensed matter systems. Here, we explore an exotic strongly-correlated system
of Interacting Dual Mott Insulators of bosons and fermions. We reveal that an
inter-species interaction between bosons and fermions drastically modifies each
Mott insulator, causing effects that include melting, generation of composite
particles, an anti-correlated phase, and complete phase-separation. Comparisons
between the experimental results and numerical simulations indicate intrinsic
adiabatic heating and cooling for the attractively and repulsively interacting
dual Mott Insulators, respectively
Light-cone-like spreading of correlations in a quantum many-body system
How fast can correlations spread in a quantum many-body system? Based on the
seminal work by Lieb and Robinson, it has recently been shown that several
interacting many-body systems exhibit an effective light cone that bounds the
propagation speed of correlations. The existence of such a "speed of light" has
profound implications for condensed matter physics and quantum information, but
has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body
system. By quenching a one-dimensional quantum gas in an optical lattice, we
reveal how quasiparticle pairs transport correlations with a finite velocity
across the system, resulting in an effective light cone for the quantum
dynamics. Our results open important perspectives for understanding relaxation
of closed quantum systems far from equilibrium as well as for engineering
efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at roots(NN) = 130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T) 3 GeV/c, a saturation of v(2) is observed which persists up to p(T) = 6 GeV/c
Probing the relaxation towards equilibrium in an isolated strongly correlated 1D Bose gas
The problem of how complex quantum systems eventually come to rest lies at
the heart of statistical mechanics. The maximum entropy principle put forward
in 1957 by E. T. Jaynes suggests what quantum states one should expect in
equilibrium but does not hint as to how closed quantum many-body systems
dynamically equilibrate. A number of theoretical and numerical studies
accumulate evidence that under specific conditions quantum many-body models can
relax to a situation that locally or with respect to certain observables
appears as if the entire system had relaxed to a maximum entropy state. In this
work, we report the experimental observation of the non-equilibrium dynamics of
a density wave of ultracold bosonic atoms in an optical lattice in the regime
of strong correlations. Using an optical superlattice, we are able to prepare
the system in a well-known initial state with high fidelity. We then follow the
dynamical evolution of the system in terms of quasi-local densities, currents,
and coherences. Numerical studies based on the time-dependent density-matrix
renormalization group method are in an excellent quantitative agreement with
the experimental data. For very long times, all three local observables show a
fast relaxation to equilibrium values compatible with those expected for a
global maximum entropy state. We find this relaxation of the quasi-local
densities and currents to initially follow a power-law with an exponent being
significantly larger than for free or hardcore bosons. For intermediate times
the system fulfills the promise of being a dynamical quantum simulator, in that
the controlled dynamics runs for longer times than present classical algorithms
based on matrix product states can efficiently keep track of.Comment: 8 pages, 6 figure
Magnetic resonance imaging of brain angiogenesis after stroke
Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to participate in brain plasticity and functional recovery after stroke. The excellent soft tissue contrast, high spatial and temporal resolution, and versatility render MRI particularly suitable to monitor the dynamic processes involved in vascular remodeling after stroke. Here we review recent advances in the field of MR imaging that are aimed at assessment of tissue perfusion and microvascular characteristics, including cerebral blood flow and volume, vascular density, size and integrity. The potential of MRI to noninvasively monitor the evolution of post-ischemic angiogenic processes is demonstrated from a variety of in vivo studies in experimental stroke models. Finally, we discuss some pitfalls and limitations that may critically affect the accuracy and interpretation of MRI-based measures of (neo)vascularization after stroke
Cucurbitacin I Inhibits Cell Motility by Indirectly Interfering with Actin Dynamics
Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. actin depolymerization experiments, cucurbitacin I had no effect on the rate of actin filament disassembly at the nanomolar concentrations that inhibit cell migration. At elevated concentrations, the depolymerization rate was also unaffected, although there was a delay in the initiation of depolymerization. Therefore, cucurbitacin I targets some factor involved in cellular actin dynamics other than actin itself. Two candidate proteins that play roles in actin depolymerization are the actin-severing proteins cofilin and gelsolin. Cucurbitacin I possesses electrophilic reactivity that may lead to chemical modification of its target protein, as suggested by structure-activity relationship data. However, mass spectrometry revealed no evidence for modification of purified cofilin or gelsolin by cucurbitacin I.Cucurbitacin I results in accumulation of actin filaments in cells by a unique indirect mechanism. Furthermore, the proximal target of cucurbitacin I relevant to cell migration is unlikely to be the same one involved in activation of the JAK2/STAT3 pathway
Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers
Background
Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. Trial registration number: NCT00520819 http://clinicaltrials.gov.
Methods
In an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays.
Results
Changes were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups.
Conclusions
The observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes
Non-invasive cardiac assessment in high risk patients (The GROUND study): rationale, objectives and design of a multi-center randomized controlled clinical trial
Background: Peripheral arterial disease (PAD) is a common disease associated with a considerably increased risk of future cardiovascular events and most of these patients will die from coronary artery disease (CAD). Screening for silent CAD has become an option with recent non-invasive developments in CT (computed tomography)-angiography and MR (magnetic resonance) stress testing. Screening in combination with more aggressive treatment may improve prognosis. Therefore we propose to study whether a cardiac imaging algorithm, using non-invasive imaging techniques followed by treatment will reduce the risk of cardiovascular disease in PAD patients free from cardiac symptoms. Design: The GROUND study is designed as a prospective, multi-center, randomized clinical trial. Patients with peripheral arterial disease, but without symptomatic cardiac disease will be asked to participate. All patients receive a proper risk factor management before randomization. Half of the recruited patients will enter the 'control group' and only undergo CT calcium scoring. The other half of the recruited patients (index group) will undergo the non invasive cardiac imaging algorithm followed by evidence-based treatment. First, patients are submitted to CT calcium scoring and CT angiography. Patients with a left main (or equivalent) coronary artery stenosis of > 50% on CT will be referred to a cardiologist without further imaging. All other patients in this group will undergo dobutamine stress magnetic resonance (DSMR) testing. Patients with a DSMR positive for ischemia will also be referred to a cardiologist. These patients are candidates for conventional coronary angiography and cardiac interventions (coronary artery bypass grafting (CABG) or percutaneous cardiac interventions (PCI)), if indicated. All participants of the trial will enter a 5 year follow up period for the occurrence of cardiovascular events. Sequential interim analysis will take place. Based on sample size calculations about 1200 patients are needed to detect a 24% reduction in primary outcome. Implications: The GROUND study will provide insight into the question whether non-invasive cardiac imaging reduces the risk of cardiovascular events in patients with peripheral arterial disease, but without symptoms of coronary artery disease. Trial registration: Clinicaltrials.gov NCT0018911
On-demand manufacturing of clinical-quality biopharmaceuticals
Conventional manufacturing of protein biopharmaceuticals in centralized, large-scale, single-product facilities is not well-suited to the agile production of drugs for small patient populations or individuals. Previous solutions for small-scale manufacturing are limited in both process reproducibility and product quality, owing to their complicated means of protein expression and purification. We describe an automated, benchtop, multiproduct manufacturing system, called Integrated Scalable Cyto-Technology (InSCyT), for the end-to-end production of hundreds to thousands of doses of clinical-quality protein biologics in about 3 d. Unlike previous systems, InSCyT includes fully integrated modules for sustained production, efficient purification without the use of affinity tags, and formulation to a final dosage form of recombinant biopharmaceuticals. We demonstrate that InSCyT can accelerate process development from sequence to purified drug in 12 weeks. We used integrated design to produce human growth hormone, interferon α-2b and granulocyte colony-stimulating factor with highly similar processes on this system and show that their purity and potency are comparable to those of marketed reference products
- …
