310 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse

    Clinical features and survival outcomes of patients with diffuse large B-cell lymphoma: analysis of web-based data from the Korean Lymphoma Working Party Registry

    Get PDF
    Background: This study aimed to survey the clinical spectrum of diffuse large B-cell lymphoma (DLBCL) in terms of epidemiology, pathologic subtypes, stage, and prognostic index as well as treatment outcomes. Methods: In 2007‒2008, 13 university hospitals evenly distributed in the Korean peninsula contributed to the online registry of DLBCL at www.lymphoma.or.kr and filed a total of 1,665 cases of DLBCL recorded since 1990. Results: Our analysis showed a higher prevalence of DLBCL in male than in female individuals (M:F=958:707), and extranodal disease was more common than primary nodular disease (53% vs. 47%). Among the 1,544 patients who had been treated with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or rituximab-CHOP (R-CHOP) therapy with or without radiation, 993 (63.9%) were alive, with 80% free of disease, 417 were dead (26.8%), with 13% free of disease, and 144 (9.3%) were lost to follow-up, with 23% free of disease. Age below 60 years, stage at diagnosis, international prognostic index (IPI) score regardless of age, and addition of rituximab to CHOP therapy in low- and low-intermediate-risk groups according to IPI scores significantly increased survival duration. Conclusion: The epidemiology, clinical spectrum, and biological behavior of DLBCL in Korea are similar to those observed in Western countries, and the advent of rituximab improved survival

    Interim Guidelines on Antiviral Therapy for COVID-19

    Get PDF
    Since the first case was reported in Wuhan, Hubei Province, China on December 12, 2019, Coronavirus disease 2019 (COVID-19) has spread widely to other countries since January 2020. As of April 16, 2020, 10635 confirmed cases have been reported, with 230 deaths in Korea. COVID-19 patients may be asymptomatic or show various clinical manifestations, including acute symptoms such as fever, fatigue, sore throat; pneumonia presenting as acute respiratory distress syndrome; and multiple organ failure. As COVID-19 has such varied clinical manifestations and case fatality rates, no standard antiviral therapy regimen has been established other than supportive therapy. In the present guideline, we aim to introduce potentially helpful antiviral and other drug therapies based on in vivo and in vitro research and clinical experiences from many countries

    A prospective, multicenter, observational study of long-term decitabine treatment in patients with myelodysplastic syndrome.

    Get PDF
    This prospective observational study evaluated the efficacy and safety of long-term decitabine treatment in patients with myelodysplastic syndrome (MDS). Decitabine 20 mg/m(2)/day was administered intravenously for 5 consecutive days every 4 weeks to MDS patients in intermediate-1 or higher International Prognostic Scoring System (IPSS) risk categories. Active antimicrobial prophylaxis was given to prevent infectious complications. Overall response rate (ORR), overall survival (OS), progression-free survival (PFS), and time to response were evaluated, as were adverse events. The final analysis included 132 patients. IPSS risk was intermediate-2/high in 34.9% patients. The patients received a median of 5 cycles, with responders receiving a median of 8 cycles (range, 2-30). ORR was 62.9% (complete response [CR], 36; partial response [PR], 3; marrow complete response [mCR], 19; and hematologic improvement, 25). Among responders, 39% showed first response at cycle 3 or later. OS at 2 years was 60.9%, with 17% progressing to acute myeloid leukemia. PFS at 2 years was 51.0%. Patients achieving mCR showed comparable survival outcomes to those with CR/PR. With active antibiotic prophylaxis, febrile neutropenia events occurred in 61 of 1,033 (6%) cycles. Long-term decitabine treatment with antibiotic prophylaxis showed favorable outcomes in MDS patients, and mCR predicted favorable survival outcomes

    MiTF links Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human melanocytes and melanoma cells

    Get PDF
    As a survival factor for melanocytes lineage cells, MiTF plays multiple roles in development and melanomagenesis. What role MiTF plays in the DNA damage response is currently unknown. In this report we observed that MiTF was phosphorylated at serine 73 after UVC radiation, which was followed by proteasome-mediated degradation. Unlike after c-Kit stimulation, inhibiting p90RSK-1 did not abolish the band shift of MiTF protein, nor did it abolish the UVC-mediated MiTF degradation, suggesting that phosphorylation on serine 73 by Erk1/2 is a key event after UVC. Furthermore, the MiTF-S73A mutant (Serine 73 changed to Alanine via site-directed mutagenesis) was unable to degrade and was continuously expressed after UVC exposure. Compared to A375 melanoma cells expressing wild-type MiTF (MiTF-WT), cells expressing MiTF-S73A mutant showed less p21WAF1/CIP1 accumulation and a delayed p21WAF1/CIP1 recovery after UVC. Consequently, cells expressing MiTF-WT showed a temporary G1 arrest after UVC, but cells expressing MiTF-S73A mutant or lack of MiTF expression did not. Finally, cell lines with high levels of MiTF expression showed higher resistance to UVC-induced cell death than those with low-level MiTF. These data suggest that MiTF mediates a survival signal linking Erk1/2 activation and p21WAF1/CIP1 regulation via phosphorylation on serine 73, which facilitates cell cycle arrest. In addition, our data also showed that exposure to different wavelengths of UV light elicited different signal pathways involving MiTF

    Synergistic Anti-Tumor Effects of Combination of Photodynamic Therapy and Arsenic Compound in Cervical Cancer Cells: In Vivo and In Vitro Studies

    Get PDF
    The effects of As4O6 as adjuvant on photodynamic therapy (PDT) were studied. As4O6 is considered to have anticancer activity via several biological actions, such as free radical production and inhibition of VEGF expression. PDT or As4O6 significantly inhibited TC-1 cell proliferation in a dose-dependent manner (P<0.05) by MTT assay. The anti-proliferative effect of the combination treatment was significantly higher than in TC-1 cells treated with either photodynamic therapy or As4O6 alone (62.4 and 52.5% decrease compared to vehicle-only treated TC-1 cells, respectively, P<0.05). In addition, cell proliferation in combination of photodynamic therapy and As4O6 treatment significantly decreased by 77.4% (P<0.05). Cell survival pathway (Naip1, Tert and Aip1) and p53-dependent pathway (Bax, p21Cip1, Fas, Gadd45, IGFBP-3 and Mdm-2) were markedly increased by combination treatment of photodynamic therapy and As4O6. In addition, the immune response in the NEAT pathway (Ly-12, CD178 and IL-2) was also modulated after combination treatment, suggesting improved antitumor effects by controlling unwanted growth-stimulatory pathways. The combination effect apparently reflected concordance with in vitro data, in restricting tumor growth in vivo and in relation to some common signaling pathways to those observed in vitro. These findings suggest the benefit of combinatory treatment with photodynamic therapy and As4O6 for inhibition of cervical cancer cell growth

    OsLIC, a Novel CCCH-Type Zinc Finger Protein with Transcription Activation, Mediates Rice Architecture via Brassinosteroids Signaling

    Get PDF
    Rice architecture is an important agronomic trait and a major limiting factor for its high productivity. Here we describe a novel CCCH-type zinc finger gene, OsLIC (Oraza sativa leaf and tiller angle increased controller), which is involved in the regulation of rice plant architecture. OsLIC encoded an ancestral and unique CCCH type zinc finge protein. It has many orthologous in other organisms, ranging from yeast to humane. Suppression of endogenous OsLIC expression resulted in drastically increased leaf and tiller angles, shortened shoot height, and consequently reduced grain production in rice. OsLIC is predominantly expressed in rice collar and tiller bud. Genetic analysis suggested that OsLIC is epistatic to d2-1, whereas d61-1 is epistatic to OsLIC. Interestingly, sterols were significantly higher in level in transgenic shoots than in the wild type. Genome-wide expression analysis indicated that brassinosteroids (BRs) signal transduction was activated in transgenic lines. Moreover, transcription of OsLIC was induced by 24-epibrassinolide. OsLIC, with a single CCCH motif, displayed binding activity to double-stranded DNA and single-stranded polyrA, polyrU and polyrG but not polyrC. It contains a novel conserved EELR domain among eukaryotes and displays transcriptional activation activity in yeast. OsLIC may be a transcription activator to control rice plant architecture

    Single-Spin Addressing in an Atomic Mott Insulator

    Get PDF
    Ultracold atoms in optical lattices are a versatile tool to investigate fundamental properties of quantum many body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be extended down to the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focussed laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line and observed that our addressing scheme leaves the atoms in the motional ground state. Our results open the path to a wide range of novel applications from quantum dynamics of spin impurities, entropy transport, implementation of novel cooling schemes, and engineering of quantum many-body phases to quantum information processing.Comment: 8 pages, 5 figure
    corecore